Back to Search
Start Over
ModuleNet: Knowledge-Inherited Neural Architecture Search
- Source :
- IEEE transactions on cybernetics. 52(11)
- Publication Year :
- 2021
-
Abstract
- Although neural the architecture search (NAS) can bring improvement to deep models, it always neglects precious knowledge of existing models. The computation and time costing property in NAS also means that we should not start from scratch to search, but make every attempt to reuse the existing knowledge. In this article, we discuss what kind of knowledge in a model can and should be used for a new architecture design. Then, we propose a new NAS algorithm, namely, ModuleNet, which can fully inherit knowledge from the existing convolutional neural networks. To make full use of the existing models, we decompose existing models into different modules, which also keep their weights, consisting of a knowledge base. Then, we sample and search for a new architecture according to the knowledge base. Unlike previous search algorithms, and benefiting from inherited knowledge, our method is able to directly search for architectures in the macrospace by the NSGA-II algorithm without tuning parameters in these modules. Experiments show that our strategy can efficiently evaluate the performance of a new architecture even without tuning weights in convolutional layers. With the help of knowledge we inherited, our search results can always achieve better performance on various datasets (CIFAR10, CIFAR100, and ImageNet) over original architectures.
- Subjects :
- FOS: Computer and information sciences
Property (programming)
Computer science
Computer Vision and Pattern Recognition (cs.CV)
Computation
Computer Science - Computer Vision and Pattern Recognition
Reuse
Machine learning
computer.software_genre
Convolutional neural network
Search algorithm
Electrical and Electronic Engineering
Architecture
Activity-based costing
business.industry
Computer Science Applications
Human-Computer Interaction
Knowledge base
Control and Systems Engineering
Artificial intelligence
Neural Networks, Computer
business
computer
Software
Algorithms
Information Systems
Subjects
Details
- ISSN :
- 21682275
- Volume :
- 52
- Issue :
- 11
- Database :
- OpenAIRE
- Journal :
- IEEE transactions on cybernetics
- Accession number :
- edsair.doi.dedup.....11bf759a544f4eef7277a5679ff06cf4