Back to Search
Start Over
A continuous-time adaptive particle filter for estimations under measurement time uncertainties with an application to a plasma-leucine mixed effects model
- Source :
- BMC Systems Biology; Vol 7, BMC Systems Biology
- Publication Year :
- 2013
-
Abstract
- Background When mathematical modelling is applied to many different application areas, a common task is the estimation of states and parameters based on measurements. With this kind of inference making, uncertainties in the time when the measurements have been taken are often neglected, but especially in applications taken from the life sciences, this kind of errors can considerably influence the estimation results. As an example in the context of personalized medicine, the model-based assessment of the effectiveness of drugs is becoming to play an important role. Systems biology may help here by providing good pharmacokinetic and pharmacodynamic (PK/PD) models. Inference on these systems based on data gained from clinical studies with several patient groups becomes a major challenge. Particle filters are a promising approach to tackle these difficulties but are by itself not ready to handle uncertainties in measurement times. Results In this article, we describe a variant of the standard particle filter (PF) algorithm which allows state and parameter estimation with the inclusion of measurement time uncertainties (MTU). The modified particle filter, which we call MTU-PF, also allows the application of an adaptive stepsize choice in the time-continuous case to avoid degeneracy problems. The modification is based on the model assumption of uncertain measurement times. While the assumption of randomness in the measurements themselves is common, the corresponding measurement times are generally taken as deterministic and exactly known. Especially in cases where the data are gained from measurements on blood or tissue samples, a relatively high uncertainty in the true measurement time seems to be a natural assumption. Our method is appropriate in cases where relatively few data are used from a relatively large number of groups or individuals, which introduce mixed effects in the model. This is a typical setting of clinical studies. We demonstrate the method on a small artificial example and apply it to a mixed effects model of plasma-leucine kinetics with data from a clinical study which included 34 patients. Conclusions Comparisons of our MTU-PF with the standard PF and with an alternative Maximum Likelihood estimation method on the small artificial example clearly show that the MTU-PF obtains better estimations. Considering the application to the data from the clinical study, the MTU-PF shows a similar performance with respect to the quality of estimated parameters compared with the standard particle filter, but besides that, the MTU algorithm shows to be less prone to degeneration than the standard particle filter.
- Subjects :
- Computer science
Leucine kinetics
DYSLIPIDEMIA
Inference
02 engineering and technology
01 natural sciences
010104 statistics & probability
Structural Biology
0202 electrical engineering, electronic engineering, information engineering
Mixed effects
IMPLEMENTATION
SEQUENTIAL MONTE-CARLO
Randomness
Estimation theory
Applied Mathematics
Methodology Article
Systems Biology
Uncertainty
Nonlinear filtering
3. Good health
Computer Science Applications
Modeling and Simulation
Particle filter
Algorithm
Algorithms
PARAMETER-ESTIMATION
Mixed model
education
OVERPRODUCTION
Context (language use)
Adaptive stepsize
METABOLISM
Sequential Monte Carlo methods
Models, Biological
Leucine
Modelling and Simulation
Parameter estimation
Humans
STOCHASTIC DIFFERENTIAL-EQUATIONS
0101 mathematics
Molecular Biology
Simulation
Measurement time uncertainties
PK/PD
020206 networking & telecommunications
Kinetics
3121 General medicine, internal medicine and other clinical medicine
3111 Biomedicine
Degeneracy (mathematics)
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- BMC Systems Biology; Vol 7, BMC Systems Biology
- Accession number :
- edsair.doi.dedup.....11b34866623fca52b8e4444162aa304a