Back to Search Start Over

Two-dimensional silicon chalcogenides with high carrier mobility for photocatalytic water splitting

Authors :
Jun-Hui Yuan
Xiaomin Cheng
Ming Xu
Xiang-Shui Miao
Sheng Wang
Yun-Lai Zhu
Kan-Hao Xue
Ya-Qian Song
Source :
Journal of Materials Science. 54:11485-11496
Publication Year :
2019
Publisher :
Springer Science and Business Media LLC, 2019.

Abstract

Highly-efficient water splitting based on solar energy is one of the most attractive research focuses in the energy field. Searching for more candidate photocatalysts that can work under visible-light irradiation are highly demanded. Herein, using first principle calculations based on density functional theory, we predict that the two dimensional silicon chalcogenides, i.e. SiX (X=S, Se, Te) monolayers, as semiconductors with 2.43 eV~3.00 eV band gaps, exhibit favorable band edge positions for photocatalytic water splitting. The optical adsorption spectra demonstrate that the SiX monolayers have pronounced optical absorption in the visible light region. Moreover, the band gaps and band edge positions of silicon chalcogenides monolayers can be tuned by applying biaxial strain or increasing the number of layers, in order to better fit the redox potentials of water. The combined novel electronic, high carrier mobility, and optical properties render the two dimensional SiX a promising photocatalyst for water splitting.<br />5 figures, 2 tables

Details

ISSN :
15734803 and 00222461
Volume :
54
Database :
OpenAIRE
Journal :
Journal of Materials Science
Accession number :
edsair.doi.dedup.....119b60bf27c14ed92166790aeb75f18a