Back to Search Start Over

Utility of Molecular Imaging with 2-Deoxy-2-[Fluorine-18] Fluoro-D-Glucose Positron Emission Tomography (18F-FDG PET) for Small Cell Lung Cancer (SCLC): A Radiation Oncology Perspective

Authors :
Selcuk Demiral
Bora Uysal
Omer Sager
Hakan Gamsiz
Bahar Dirican
Ferrat Dincoglan
Murat Beyzadeoglu
Yelda Elcim
Esin Gundem
Source :
Current Radiopharmaceuticals. 12:4-10
Publication Year :
2019
Publisher :
Bentham Science Publishers Ltd., 2019.

Abstract

Background and Objective: Although accounting for a relatively small proportion of all lung cancers, small cell lung cancer (SCLC) remains to be a global health concern with grim prognosis. Radiotherapy (RT) plays a central role in SCLC management either as a curative or palliative therapeutic strategy. There has been considerable progress in RT of SCLC, thanks to improved imaging techniques leading to accurate target localization for precise delivery of RT. Positron emission tomography (PET) is increasingly used in oncology practice as a non-invasive molecular imaging modality. Methods: Herein, we review the utility of molecular imaging with 2-deoxy-2-[fluorine-18] fluoro-Dglucose PET (18F-FDG PET) for SCLC from a radiation oncology perspective. Results: There has been extensive research on the utility of PET for SCLC in terms of improved staging, restaging, treatment designation, patient selection for curative/palliative intent, target localization, response assessment, detection of residual/recurrent disease, and prediction of treatment outcomes. Conclusion: PET provides useful functional information as a non-invasive molecular imaging modality and may be exploited to improve the management of patients with SCLC. Incorporation of PET/CT in staging of patients with SCLC may aid in optimal treatment allocation for an improved therapeutic ratio. From a radiation oncology perspective, combination of functional and anatomical data provided by integrated PET/CT improves discrimination between atelectasis and tumor, and assists in the designation of RT portals with its high accuracy to detect intrathoracic tumor and nodal disease. Utility of molecular imaging for SCLC should be further investigated in prospective randomized trials to acquire a higher level of evidence for future potential applications of PET.

Details

ISSN :
18744710
Volume :
12
Database :
OpenAIRE
Journal :
Current Radiopharmaceuticals
Accession number :
edsair.doi.dedup.....1199897597081d97770f8a398b231990
Full Text :
https://doi.org/10.2174/1874471012666181120162434