Back to Search Start Over

Characterization of partially observed epidemics through Bayesian inference: application to COVID-19

Authors :
Khachik Sargsyan
Jaideep Ray
Cosmin Safta
Source :
Computational Mechanics
Publication Year :
2020
Publisher :
Springer Science and Business Media LLC, 2020.

Abstract

We demonstrate a Bayesian method for the “real-time” characterization and forecasting of partially observed COVID-19 epidemic. Characterization is the estimation of infection spread parameters using daily counts of symptomatic patients. The method is designed to help guide medical resource allocation in the early epoch of the outbreak. The estimation problem is posed as one of Bayesian inference and solved using a Markov chain Monte Carlo technique. The data used in this study was sourced before the arrival of the second wave of infection in July 2020. The proposed modeling approach, when applied at the country level, generally provides accurate forecasts at the regional, state and country level. The epidemiological model detected the flattening of the curve in California, after public health measures were instituted. The method also detected different disease dynamics when applied to specific regions of New Mexico.

Details

Language :
English
ISSN :
14320924 and 01787675
Database :
OpenAIRE
Journal :
Computational Mechanics
Accession number :
edsair.doi.dedup.....116fcf9ef3d438dc658e0ce6d715c7a2
Full Text :
https://doi.org/10.1007/s00466-020-01897-z