Back to Search Start Over

Optimal estimation reconstruction of the optical properties of a two-layered tissue phantom from time-resolved single-distance measurements

Authors :
Paola Di Ninni
Fabrizio Martelli
Samuele Del Bianco
Stefano Cavalieri
Heidrun Wabnitz
Lorenzo Spinelli
Alexander Jelzow
Rainer Macdonald
Tiziano Binzoni
Source :
Journal of biomedical optics (2015): 115001-1–115001-12. doi:10.1117/1.JBO.20.11.115001, info:cnr-pdr/source/autori:Fabrizio Martelli; Samuele Del Bianco; Lorenzo Spinelli; Stefano Cavalieri; Paola Di Ninni; Tiziano Binzoni; Alexander Jelzow; Rainer Macdonald; Heidrun Wabnitz/titolo:Optimal estimation reconstruction of the optical properties of a two-layered tissue phantom from time-resolved single distance measurements/doi:10.1117%2F1.JBO.20.11.115001/rivista:Journal of biomedical optics/anno:2015/pagina_da:115001-1/pagina_a:115001-12/intervallo_pagine:115001-1–115001-12/volume, Journal of Biomedical Optics, Vol. 20, No 11 (2015) P. 115001
Publication Year :
2015

Abstract

In this work, we have tested the optimal estimation (OE) algorithm for the reconstruction of the optical properties of a two-layered liquid tissue phantom from time-resolved single-distance measurements. The OE allows a priori information, in particular on the range of variation of fit parameters, to be included. The purpose of the present investigations was to compare the performance of OE with the Levenberg–Marquardt method for a geometry and real experimental conditions typically used to reconstruct the optical properties of biological tissues such as muscle and brain. The absorption coefficient of the layers was varied in a range of values typical for biological tissues. The reconstructions performed demonstrate the substantial improvements achievable with the OE provided a priori information is available. We note the extreme reliability, robustness, and accuracy of the retrieved absorption coefficient of the second layer obtained with the OE that was found for up to six fit parameters, with an error in the retrieved values of less than 10%. A priori information on fit parameters and fixed forward model parameters clearly improves robustness and accuracy of the inversion procedure.

Details

ISSN :
15602281 and 10833668
Volume :
20
Issue :
11
Database :
OpenAIRE
Journal :
Journal of biomedical optics
Accession number :
edsair.doi.dedup.....115267929721fe3de3bf06ec33875073