Back to Search Start Over

Direct and sustained intracellular delivery of exogenous molecules using acoustic-transfection with high frequency ultrasound

Authors :
Sangpil Yoon
K. Kirk Shung
Chi Tat Chiu
Jae Youn Hwang
Yingxiao Wang
Min Gon Kim
Hyung Ham Kim
Source :
Scientific Reports
Publication Year :
2016
Publisher :
Springer Science and Business Media LLC, 2016.

Abstract

Controlling cell functions for research and therapeutic purposes may open new strategies for the treatment of many diseases. An efficient and safe introduction of membrane impermeable molecules into target cells will provide versatile means to modulate cell fate. We introduce a new transfection technique that utilizes high frequency ultrasound without any contrast agents such as microbubbles, bringing a single-cell level targeting and size-dependent intracellular delivery of macromolecules. The transfection apparatus consists of an ultrasonic transducer with the center frequency of over 150 MHz and an epi-fluorescence microscope, entitled acoustic-transfection system. Acoustic pulses, emitted from an ultrasonic transducer, perturb the lipid bilayer of the cell membrane of a targeted single-cell to induce intracellular delivery of exogenous molecules. Simultaneous live cell imaging using HeLa cells to investigate the intracellular concentration of Ca2+ and propidium iodide (PI) and the delivery of 3 kDa dextran labeled with Alexa 488 were demonstrated. Cytosolic delivery of 3 kDa dextran induced via acoustic-transfection was manifested by diffused fluorescence throughout whole cells. Short-term (6 hr) cell viability test and long-term (40 hr) cell tracking confirmed that the proposed approach has low cell cytotoxicity.

Details

ISSN :
20452322
Volume :
6
Database :
OpenAIRE
Journal :
Scientific Reports
Accession number :
edsair.doi.dedup.....111b3e13bfbea9491144dda99b3ed01d
Full Text :
https://doi.org/10.1038/srep20477