Back to Search Start Over

Partially-Perforated Self-Reinforced Polyurea Foams

Authors :
George Youssef
Somer M. Nacy
Atif Mohammad Shaik
Nathan Reed
Nha Uyen Huynh
Sophia Do
Source :
Applied Sciences, Volume 10, Issue 17, Applied Sciences, Vol 10, Iss 5869, p 5869 (2020)
Publication Year :
2020
Publisher :
Multidisciplinary Digital Publishing Institute, 2020.

Abstract

This paper reports the unique microstructure of polyurea foams that combines the advantages of open and closed cell polymeric foams, which were synthesized through a self-foaming process. The latter was the result of aggressive mechanical mixing of diamine curative, isocyanate, and deionized water at ambient conditions, which can be adjusted on-demand to produce variable density polyurea foam. The spherical, semi-closed microcellular structure has large perforations on the cell surface resulting from the concurrent expansion of neighboring cells and small holes at the bottom surface of the cells. This resulted in a partially perforated microcellular structure of polyurea foam. As a byproduct of the manufacturing process, polyurea microspheres nucleate and deposit on the inner cell walls of the foam, acting as a reinforcement. Since cell walls and the microspheres are made of polyurea, the resulting reinforcement effect overcomes the fundamental interfacial issue of different adjacent materials. The partially perforated, self-reinforced polyurea foam is compared to the performance of traditional counterparts in biomechanical impact scenarios. An analytical model was developed to explicate the stiffening effect associated with the reinforcing microspheres. The model results indicate that the reinforced microcell exhibited, on average, ~30% higher stiffness than its barren counterpart.

Details

Language :
English
ISSN :
20763417
Database :
OpenAIRE
Journal :
Applied Sciences
Accession number :
edsair.doi.dedup.....110bc12e915f84f12779f636822a6985
Full Text :
https://doi.org/10.3390/app10175869