Back to Search Start Over

NAA80 bi-allelic missense variants result in high-frequency hearing loss, muscle weakness and developmental delay

Authors :
Irena J J Muffels
Didier Vertommen
Jiska L I Musch
Gijs van Haaften
Emile Van Schaftingen
Maarten P.G. Massink
Elsa Wiame
Peter M. van Hasselt
Holger Rehmann
Sabine A. Fuchs
Source :
Brain Communications
Publication Year :
2021
Publisher :
Oxford University Press (OUP), 2021.

Abstract

The recent identification of NAA80/NAT6 as the enzyme that acetylates actins generated new insight into the process of post-translational actin modifications; however, the role of NAA80 in human physiology and pathology has not been clarified yet. We report two individuals from a single family harbouring a homozygous c.389T>C, p.(Leu130Pro) NAA80 genetic variant. Both individuals show progressive high-frequency sensorineural hearing loss, craniofacial dysmorphisms, developmental delay and mild proximal and axial muscle weakness. Based on the molecular structure, we predicted and confirmed the NAA80 c.389T>C, p.(Leu130Pro) variant to result in protein destabilization, causing severely decreased NAA80 protein availability. Concurrently, individuals exhibited a ∼50% decrease of actin acetylation. NAA80 individual derived fibroblasts and peripheral blood mononuclear cells showed increased migration, increased filopodia counts and increased levels of polymerized actin, in agreement with previous observations in NAA80 knock-out cells. Furthermore, the significant clinical overlap between NAA80 individuals and individuals with pathogenic variants in several actin subtypes reflects the general importance of controlled actin dynamics for the inner ear, brain and muscle. Taken together, we describe a new syndrome, caused by NAA80 genetic variants leading to decreased actin acetylation and disrupted associated molecular functions. Our work suggests a crucial role for NAA80-mediated actin dynamics in neuronal health, muscle health and hearing.<br />Muffels et al. report two brothers harbouring a homozygous missense NAA80 genetic variant, with sensorineural hearing loss, craniofacial dysmorphisms, developmental delay and muscle weakness. At the cellular level, they show that the NAA80 variant leads to NAA80 deficiency, causing decreased actin acetylation and disrupted actin cytoskeletal functions.<br />Graphical Abstract Graphical Abstract

Details

ISSN :
26321297
Volume :
3
Database :
OpenAIRE
Journal :
Brain Communications
Accession number :
edsair.doi.dedup.....10f15a0a9c8b01d2ef46508110a1267e