Back to Search Start Over

Comparison of algorithms for identifying people with HIV from electronic medical records in a large, multi-site database

Authors :
Jessica P Ridgway
Joseph A Mason
Eleanor E Friedman
Samantha Devlin
Junlan Zhou
David Meltzer
John Schneider
Source :
JAMIA open. 5(2)
Publication Year :
2021

Abstract

Objective As electronic medical record (EMR) data are increasingly used in HIV clinical and epidemiologic research, accurately identifying people with HIV (PWH) from EMR data is paramount. We sought to evaluate EMR data types and compare EMR algorithms for identifying PWH in a multicenter EMR database. Materials and Methods We collected EMR data from 7 healthcare systems in the Chicago Area Patient-Centered Outcomes Research Network (CAPriCORN) including diagnosis codes, anti-retroviral therapy (ART), and laboratory test results. Results In total, 13 935 patients had a positive laboratory test for HIV; 33 412 patients had a diagnosis code for HIV; and 17 725 patients were on ART. Only 8576 patients had evidence of HIV-positive status for all 3 data types (laboratory results, diagnosis code, and ART). A previously validated combination algorithm identified 22 411 patients as PWH. Conclusion EMR algorithms that combine laboratory results, administrative data, and ART can be applied to multicenter EMR data to identify PWH.

Subjects

Subjects :
Health Informatics

Details

ISSN :
25742531
Volume :
5
Issue :
2
Database :
OpenAIRE
Journal :
JAMIA open
Accession number :
edsair.doi.dedup.....10eb624ede766da74c66fc5ff585bbad