Back to Search Start Over

How tree species with contrasting biological nitrification inhibition capacity influence denitrifier activity and abundance? Insights from reciprocal transfers of soil

Authors :
X. Le Roux
Bernd Zeller
Alessandro Florio
C. Bréfort
Franck Poly
C. Creuze des Chatelliers
J. Gervaix
Laboratoire d'Ecologie Microbienne - UMR 5557 (LEM)
Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Ecole Nationale Vétérinaire de Lyon (ENVL)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Unité de recherche Biogéochimie des Ecosystèmes Forestiers (BEF)
Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Source :
Biology and Fertility of Soils, Biology and Fertility of Soils, Springer Verlag, 2021, 57 (8), pp.1089-1101. ⟨10.1007/s00374-021-01600-1⟩
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

International audience; We evaluated whether and how rapidly temperate forest tree species able to stimulate or inhibit nitrification (through biological nitrification inhibition, BNI) also influence denitrifier activity and abundance in soil and identified the main determinants of changes in denitrification. A reciprocal soil core transfer approach was implemented at a long-term experimental site between Douglas fir, a species assumed to stimulate nitrification, and stands of tree species with (spruce and Nordmann fir) or without (Corsican pine and beech) BNI capacity. Sixteen months after soil transfer, potential denitrification decreased in soils transferred from Douglas fir to another tree species and increased in soil cores transferred from any species to Douglas fir. The change in denitrification was not related to the BNI capacity of the tree species 'receiving' the soil cores. Structural equation modelling revealed that in soil cores transferred between Douglas fir and BNI species, changes in denitrification were mainly correlated to nitrifier abundances, i.e. AOA and Nitrobacter, nitrification rates, and soil NO3- availability, whereas in soil cores transferred between Douglas fir and non-BNI species denitrification changes were well correlated to C availability and the abundance of nirK-harbouring denitrifiers. Overall, our results indicate that denitrification rates can change strongly and quickly following soil transfers between tree stands. Particularly, when Douglas fir replaces BNI tree species, this quickly results in both increased nitrification and denitrification rates, thus exacerbating the ensuing risk of increased NO3- leaching and N2O emission from soil.

Details

Language :
English
ISSN :
01782762 and 14320789
Database :
OpenAIRE
Journal :
Biology and Fertility of Soils, Biology and Fertility of Soils, Springer Verlag, 2021, 57 (8), pp.1089-1101. ⟨10.1007/s00374-021-01600-1⟩
Accession number :
edsair.doi.dedup.....10e373c72ee4051dbdb4ad1b99781584
Full Text :
https://doi.org/10.1007/s00374-021-01600-1⟩