Back to Search Start Over

Implications of apoptosis for toxicity, carcinogenicity, and risk assessment: fumonisin B(1) as an example

Authors :
Samuel M. Cohen
Gordon C. Hard
Thomas L. Goldsworthy
Ronald T. Riley
Yvonne P. Dragan
Kenneth A. Voss
Paul C. Howard
Wayne R. Bidlack
Source :
Toxicological sciences : an official journal of the Society of Toxicology. 61(1)
Publication Year :
2001

Abstract

The rates of cell proliferation and cell loss in conjunction with the differentiation status of a tissue are among the many factors contributing to carcinogenesis. Nongenotoxic (non-DNA reactive) chemicals may affect this balance by increasing proliferation through direct mitogenesis or through a regenerative response following loss of cells through cytotoxic (oncotic) or apoptotic necrosis. In a recent NTP study in Fischer rats and B6C3F(1) mice, the mycotoxin fumonisin B(1) caused renal carcinomas in male rats and liver cancer in female mice. In an earlier study in male BD-IX rats, fumonisin B(1) caused hepatic toxicity and hepatocellular carcinomas. An early effect of fumonisin B(1) exposure in these target organs is apoptosis. However, there is also some evidence of oncotic necrosis following fumonisin B(1) administration, especially in the liver. Induction of apoptosis may be a consequence of ceramide synthase inhibition and disruption of sphingolipid metabolism by fumonisin B(1). Fumonisin B(1) is not genotoxic in bacterial mutagenesis screens or in the rat liver unscheduled DNA-synthesis assay. Fumonisin B(1) may be the first example of an apparently nongenotoxic (non-DNA reactive) agent producing tumors through a mode of action involving apoptotic necrosis, atrophy, and consequent regeneration.

Details

ISSN :
10966080
Volume :
61
Issue :
1
Database :
OpenAIRE
Journal :
Toxicological sciences : an official journal of the Society of Toxicology
Accession number :
edsair.doi.dedup.....10d8db0b58851b1ace147426d376dd21