Back to Search
Start Over
Nonparametric Estimation of the Regression Function in an Errors-in-Variables Model
- Source :
- Statistica Sinica, Statistica Sinica, Taipei : Institute of Statistical Science, Academia Sinica, 2007, 17, pp.1065-1090
- Publication Year :
- 2005
- Publisher :
- arXiv, 2005.
-
Abstract
- We consider the regression model with errors-in-variables where we observe $n$ i.i.d. copies of $(Y,Z)$ satisfying $Y=f(X)+\xi, \; Z=X+\sigma\varepsilon$, involving independent and unobserved random variables $X,\xi,\varepsilon$. The density $g$ of $X$ is unknown, whereas the density of $\sigma\varepsilon$ is completely known. Using the observations $(Y_i, Z_i)$, $i=1,\cdots,n$, we propose an estimator of the regression function $f$, built as the ratio of two penalized minimum contrast estimators of $\ell=fg$ and $g$, without any prior knowledge on their smoothness. We prove that its $\mathbb{L}_2$-risk on a compact set is bounded by the sum of the two $\mathbb{L}_2(\mathbb{R})$-risks of the estimators of $\ell$ and $g$, and give the rate of convergence of such estimators for various smoothness classes for $\ell$ and $g$, when the errors $\varepsilon$ are either ordinary smooth or super smooth. The resulting rate is optimal in a minimax sense in all cases where lower bounds are available.
- Subjects :
- Projection estimators
Mathematics - Statistics Theory
Nonparametric regression
[STAT.TH]Statistics [stat]/Statistics Theory [stat.TH]
Statistics Theory (math.ST)
[ STAT.TH ] Statistics [stat]/Statistics Theory [stat.TH]
Errors-in-variables
Density deconvolution
(Secondary) 62G05, 62G20
MSC 2000 Primary 62G08, 62G07. Secondary 62G05, 62G20
Adaptive estimation
[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST]
FOS: Mathematics
Minimax estimation
(Primary) 62G08, 62G07
[ MATH.MATH-ST ] Mathematics [math]/Statistics [math.ST]
Subjects
Details
- ISSN :
- 10170405 and 19968507
- Database :
- OpenAIRE
- Journal :
- Statistica Sinica, Statistica Sinica, Taipei : Institute of Statistical Science, Academia Sinica, 2007, 17, pp.1065-1090
- Accession number :
- edsair.doi.dedup.....10cc0618509f368cc02453e258e08f27
- Full Text :
- https://doi.org/10.48550/arxiv.math/0511111