Back to Search Start Over

Nonparametric Estimation of the Regression Function in an Errors-in-Variables Model

Authors :
Comte , Fabienne
Taupin , Marie-Luce
Mathématiques Appliquées Paris 5 (MAP5 - UMR 8145)
Université Paris Descartes - Paris 5 (UPD5)-Institut National des Sciences Mathématiques et de leurs Interactions (INSMI)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de Mathématiques d'Orsay (LM-Orsay)
Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)
Mathématiques Appliquées à Paris 5 ( MAP5 - UMR 8145 )
Université Paris Descartes - Paris 5 ( UPD5 ) -Institut National des Sciences Mathématiques et de leurs Interactions-Centre National de la Recherche Scientifique ( CNRS )
Laboratoire de Mathématiques d'Orsay ( LM-Orsay )
Université Paris-Sud - Paris 11 ( UP11 ) -Centre National de la Recherche Scientifique ( CNRS )
Source :
Statistica Sinica, Statistica Sinica, Taipei : Institute of Statistical Science, Academia Sinica, 2007, 17, pp.1065-1090
Publication Year :
2005
Publisher :
arXiv, 2005.

Abstract

We consider the regression model with errors-in-variables where we observe $n$ i.i.d. copies of $(Y,Z)$ satisfying $Y=f(X)+\xi, \; Z=X+\sigma\varepsilon$, involving independent and unobserved random variables $X,\xi,\varepsilon$. The density $g$ of $X$ is unknown, whereas the density of $\sigma\varepsilon$ is completely known. Using the observations $(Y_i, Z_i)$, $i=1,\cdots,n$, we propose an estimator of the regression function $f$, built as the ratio of two penalized minimum contrast estimators of $\ell=fg$ and $g$, without any prior knowledge on their smoothness. We prove that its $\mathbb{L}_2$-risk on a compact set is bounded by the sum of the two $\mathbb{L}_2(\mathbb{R})$-risks of the estimators of $\ell$ and $g$, and give the rate of convergence of such estimators for various smoothness classes for $\ell$ and $g$, when the errors $\varepsilon$ are either ordinary smooth or super smooth. The resulting rate is optimal in a minimax sense in all cases where lower bounds are available.

Details

ISSN :
10170405 and 19968507
Database :
OpenAIRE
Journal :
Statistica Sinica, Statistica Sinica, Taipei : Institute of Statistical Science, Academia Sinica, 2007, 17, pp.1065-1090
Accession number :
edsair.doi.dedup.....10cc0618509f368cc02453e258e08f27
Full Text :
https://doi.org/10.48550/arxiv.math/0511111