Back to Search Start Over

Pulsed low-energy stimulation initiates electric turbulence in cardiac tissue

Authors :
Sayedeh Hussaini
Stefan Luther
Eberhard Bodenschatz
Vladimir S. Zykov
Rupamanjari Majumder
Source :
PLoS Computational Biology, PLoS Computational Biology, Vol 17, Iss 10, p e1009476 (2021)
Publication Year :
2021
Publisher :
Public Library of Science, 2021.

Abstract

Interruptions in nonlinear wave propagation, commonly referred to as wave breaks, are typical of many complex excitable systems. In the heart they lead to lethal rhythm disorders, the so-called arrhythmias, which are one of the main causes of sudden death in the industrialized world. Progress in the treatment and therapy of cardiac arrhythmias requires a detailed understanding of the triggers and dynamics of these wave breaks. In particular, two very important questions are: 1) What determines the potential of a wave break to initiate re-entry? and 2) How do these breaks evolve such that the system is able to maintain spatiotemporally chaotic electrical activity? Here we approach these questions numerically using optogenetics in an in silico model of human atrial tissue that has undergone chronic atrial fibrillation (cAF) remodelling. In the lesser studied sub-threshold illumination régime, we discover a new mechanism of wave break initiation in cardiac tissue that occurs for gentle slopes of the restitution characteristics. This mechanism involves the creation of conduction blocks through a combination of wavefront-waveback interaction, reshaping of the wave profile and heterogeneous recovery from the excitation of the spatially extended medium, leading to the creation of re-excitable windows for sustained re-entry. This finding is an important contribution to cardiac arrhythmia research as it identifies scenarios in which low-energy perturbations to cardiac rhythm can be potentially life-threatening.<br />Author summary Electric turbulence in the heart is associated with complex spatiotemporal dynamics of nonlinear excitation waves. This life-threatening state is initiated by wavebreaks and maintained by self-organized vortices of abnormal excitation. Control over this state is achieved via defibrillation, a method whose efficacy relies on understanding the role of electric vortices in the onset and perpetuation of the turbulent state. However, in biological tissue, these vortices remain largely elusive in experiments due to limitations of visualisation. In order to study the spatiotemporal evolution of vortices in the heart precisely, reversibly and in real-time, we apply computational cardiac optogenetics on a mathematical model for human atrial tissue. Our study demonstrates a heretofore unidentified mechanism of wavebreak initiation, in the absence of standard markers of excitable medium vulnerability. This finding is an important contribution to cardiac arrhythmia research as it identifies how low-energy perturbations to cardiac rhythm can be potentially life-threatening, and render a defibrillation strategy to backfire.

Details

Language :
English
ISSN :
15537358 and 1553734X
Volume :
17
Issue :
10
Database :
OpenAIRE
Journal :
PLoS Computational Biology
Accession number :
edsair.doi.dedup.....10bde7b9248fb5e68c050c8bdb75502a