Back to Search
Start Over
Parameter recovery in two-component contamination mixtures: the L2 strategy
- Source :
- Annales Henri Poincaré, Annales Henri Poincaré, Springer Verlag, 2020, 56 (2), pp.1391-1418. ⟨10.1214/19-AIHP1007⟩, Ann. Inst. H. Poincaré Probab. Statist. 56, no. 2 (2020), 1391-1418, Annales Henri Poincaré, 2020, 56 (2), pp.1391-1418. ⟨10.1214/19-AIHP1007⟩
- Publication Year :
- 2020
- Publisher :
- HAL CCSD, 2020.
-
Abstract
- In this paper, we consider a parametric density contamination model. We work with a sample of i.i.d. data with a common density, $f^{\star }=(1-\lambda^{\star })\phi +\lambda^{\star }\phi (\cdot-\mu^{\star })$, where the shape $\phi $ is assumed to be known. We establish the optimal rates of convergence for the estimation of the mixture parameters $(\lambda^{\star },\mu^{\star })\in (0,1)\times \mathbb{R}^{d}$. In particular, we prove that the classical parametric rate $1/\sqrt{n}$ cannot be reached when at least one of these parameters is allowed to tend to $0$ with $n$.
- Subjects :
- Statistics and Probability
Work (thermodynamics)
$\mathbb{L}^{2}$ contrast
L-2 contrast
02 engineering and technology
Astrophysics::Cosmology and Extragalactic Astrophysics
01 natural sciences
010104 statistics & probability
[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST]
Convergence (routing)
0202 electrical engineering, electronic engineering, information engineering
Parameter estimation
Astrophysics::Solar and Stellar Astrophysics
62G05
[ MATH.MATH-ST ] Mathematics [math]/Statistics [math.ST]
0101 mathematics
B- ECONOMIE ET FINANCE
Astrophysics::Galaxy Astrophysics
62G20
Mathematics
Parametric statistics
Estimation theory
Component (thermodynamics)
Mathematical analysis
$L^2$ contrast
020206 networking & telecommunications
Contamination
Rate of convergence
[SHS.ECO]Humanities and Social Sciences/Economics and Finance
Two-component contamination mixture model
Astrophysics::Earth and Planetary Astrophysics
Statistics, Probability and Uncertainty
62F15
Subjects
Details
- Language :
- English
- ISSN :
- 14240637 and 14240661
- Database :
- OpenAIRE
- Journal :
- Annales Henri Poincaré, Annales Henri Poincaré, Springer Verlag, 2020, 56 (2), pp.1391-1418. ⟨10.1214/19-AIHP1007⟩, Ann. Inst. H. Poincaré Probab. Statist. 56, no. 2 (2020), 1391-1418, Annales Henri Poincaré, 2020, 56 (2), pp.1391-1418. ⟨10.1214/19-AIHP1007⟩
- Accession number :
- edsair.doi.dedup.....10b51b69a9e13d2cfb823b642f44b567