Back to Search Start Over

Bacterial Acyl-CoA Mutase Specifically Catalyzes Coenzyme B12-dependent Isomerization of 2-Hydroxyisobutyryl-CoA and (S)-3-Hydroxybutyryl-CoA

Authors :
Nadya Yaneva
Denise Przybylski
Judith Schuster
Franziska Schäfer
Hauke Harms
Thore Rohwerder
Roland H. Müller
Torsten Paproth
Vera Lede
Source :
Journal of Biological Chemistry. 287:15502-15511
Publication Year :
2012
Publisher :
Elsevier BV, 2012.

Abstract

Coenzyme B(12)-dependent acyl-CoA mutases are radical enzymes catalyzing reversible carbon skeleton rearrangements in carboxylic acids. Here, we describe 2-hydroxyisobutyryl-CoA mutase (HCM) found in the bacterium Aquincola tertiaricarbonis as a novel member of the mutase family. HCM specifically catalyzes the interconversion of 2-hydroxyisobutyryl- and (S)-3-hydroxybutyryl-CoA. Like isobutyryl-CoA mutase, HCM consists of a large substrate- and a small B(12)-binding subunit, HcmA and HcmB, respectively. However, it is thus far the only acyl-CoA mutase showing substrate specificity for hydroxylated carboxylic acids. Complete loss of 2-hydroxyisobutyric acid degradation capacity in hcmA and hcmB knock-out mutants established the central role of HCM in A. tertiaricarbonis for degrading substrates bearing a tert-butyl moiety, such as the fuel oxygenate methyl tert-butyl ether (MTBE) and its metabolites. Sequence analysis revealed several HCM-like enzymes in other bacterial strains not related to MTBE degradation, indicating that HCM may also be involved in other pathways. In all strains, hcmA and hcmB are associated with genes encoding for a putative acyl-CoA synthetase and a MeaB-like chaperone. Activity and substrate specificity of wild-type enzyme and active site mutants HcmA I90V, I90F, and I90Y clearly demonstrated that HCM belongs to a new subfamily of B(12)-dependent acyl-CoA mutases.

Details

ISSN :
00219258
Volume :
287
Database :
OpenAIRE
Journal :
Journal of Biological Chemistry
Accession number :
edsair.doi.dedup.....10b1932e0d86ce4d8b0c6e418ca579a6
Full Text :
https://doi.org/10.1074/jbc.m111.314690