Back to Search
Start Over
Repositioning the Role of Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) on the TRAIL to the Development of Diabetes Mellitus: An Update of Experimental and Clinical Evidence
- Source :
- International Journal of Molecular Sciences. 23:3225
- Publication Year :
- 2022
- Publisher :
- MDPI AG, 2022.
-
Abstract
- Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a member of the TNF protein superfamily, represents a multifaceted cytokine with unique biological features including both proapoptotic and pro-survival effects in different cell types depending on receptor interactions and local stimuli. Beyond its extensively studied anti-tumor and immunomodulatory properties, a growing body of experimental and clinical evidence over the past two decades suggests a protective role of TRAIL in the development of type 1 (T1DM) and type 2 (T2DM) diabetes mellitus. This evidence can be briefly summarized by the following observations: (i) acceleration and exacerbation of T1DM and T2DM by TRAIL blockade or genetic deficiency in animal models, (ii) prevention and amelioration of T1DM and T2DM with recombinant TRAIL treatment or systemic TRAIL gene delivery in animal models, (iii) significantly reduced circulating soluble TRAIL levels in patients with T1DM and T2DM both at disease onset and in more advanced stages of diabetes-related complications such as cardiovascular disease and diabetic nephropathy, (iv) increase of serum TRAIL levels in diabetic patients after initiation of antidiabetic treatment and metabolic improvement. To explore the underlying mechanisms and provide mechanistic links between TRAIL and diabetes, a number of animal and in vitro studies have reported direct effects of TRAIL on several tissues involved in diabetes pathophysiology such as pancreatic islets, skeletal muscle, adipose tissue, liver, kidney, and immune and vascular cells. Residual controversy remains regarding the effects of TRAIL on adipose tissue homeostasis. Although the existing evidence is encouraging and paves the way for investigating TRAIL-related interventions in diabetic patients with cardiometabolic abnormalities, caution is warranted in the extrapolation of animal and in vitro data to the clinical setting, and further research in humans is imperative in order to uncover all aspects of the TRAIL-diabetes relationship and delineate its therapeutic implications in metabolic disease.
- Subjects :
- Tumor Necrosis Factor-alpha
Organic Chemistry
Apoptosis
General Medicine
Ligands
Catalysis
Computer Science Applications
TNF-Related Apoptosis-Inducing Ligand
Inorganic Chemistry
Receptors, TNF-Related Apoptosis-Inducing Ligand
Diabetes Mellitus, Type 1
Diabetes Mellitus, Type 2
Animals
Humans
Physical and Theoretical Chemistry
Molecular Biology
Spectroscopy
Subjects
Details
- ISSN :
- 14220067
- Volume :
- 23
- Database :
- OpenAIRE
- Journal :
- International Journal of Molecular Sciences
- Accession number :
- edsair.doi.dedup.....10a989834d86b448f573d04e66ea6758
- Full Text :
- https://doi.org/10.3390/ijms23063225