Back to Search
Start Over
Relative antioxidant activities of quercetin and its structurally related substances and their effects on NF-κB/CRE/AP-1 signaling in murine macrophages
- Source :
- Molecules and Cells
- Publication Year :
- 2013
- Publisher :
- Springer Science and Business Media LLC, 2013.
-
Abstract
- Reactive oxygen species (ROS) and reactive nitrogen species (RNS) produced by the oxidative burst in activated macrophages and neutrophils cause oxidative stress-implicated diseases. Quercetin is flavonoid that occurs naturally in plants and is widely used as a nutritional supplement due to its antioxidant and anti-inflammatory properties. In this study, we investigated antioxidant activities and mechanisms of action in zymosan-induced macrophages of quercetin and quercetin-related flavonoids such as quercitrin, isoquercitrin, quercetin 3-O-β-(2″-galloyl)-rhamnopyranoside (QGR) and quercetin 3-O-β-(2″-galloyl)-glucopyranoside (QGG) as well as gallic acid, a building moiety of QGR and QGG. QGR and QGG exhibited stronger antioxidant activities compared with quercetin, whereas quercitrin, isoquercitrin and gallic acid exhibited weak-to-no antioxidant activities, assessed by 2,2-diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging, superoxide production, superoxide scavenging, nitric oxide (NO) production, peroxynitrite (ONOO−) scavenging and myeloperoxidase (MPO) activity. Regarding mechanisms, the quercetin-containing flavonoids QGR and QGG differentially targeted compared with quercetin in the NF-κB signaling pathway that inhibited the DNA binding activity of the NF-κB complex without affecting the degradation and phosphorylation of IκBα and NF-κB phosphorylation. In addition, QGR and QGG inhibited CRE and activator protein (AP-1) transcriptional activity and JNK phosphorylation by inhibiting the cAMP/protein kinase A (PKA) and protein kinase C (PKC) signaling in a different manner than quercetin. Our results showed that although QGR and QGG exhibited stronger antioxidant activities than quercetin in macrophages, their mechanisms of action in terms of the NF-κB, PKA and PKC signaling pathways were different.
- Subjects :
- Antioxidant
medicine.medical_treatment
Flavonoid
Antioxidants
chemistry.chemical_compound
Mice
Picrates
Peroxynitrous Acid
medicine
Animals
heterocyclic compounds
Molecular Biology
Reactive nitrogen species
chemistry.chemical_classification
Reactive oxygen species
Integrases
Superoxide
Macrophages
Biphenyl Compounds
NF-kappa B
Articles
Cell Biology
General Medicine
Quercitrin
Respiratory burst
Transcription Factor AP-1
chemistry
Biochemistry
Quercetin
Signal Transduction
Subjects
Details
- ISSN :
- 02191032 and 10168478
- Volume :
- 35
- Issue :
- 5
- Database :
- OpenAIRE
- Journal :
- Molecules and Cells
- Accession number :
- edsair.doi.dedup.....1086dca4b2600df59945a27e40bda459
- Full Text :
- https://doi.org/10.1007/s10059-013-0031-z