Back to Search
Start Over
FRESH 3D Bioprinting a Full-Size Model of the Human Heart
- Source :
- ACS biomaterials scienceengineering. 6(11)
- Publication Year :
- 2021
-
Abstract
- Recent advances in embedded three-dimensional (3D) bioprinting have expanded the design space for fabricating geometrically complex tissue scaffolds using hydrogels with mechanical properties comparable to native tissues and organs in the human body. The advantage of approaches such as Freeform Reversible Embedding of Suspended Hydrogels (FRESH) printing is the ability to embed soft biomaterials in a thermoreversible support bath at sizes ranging from a few millimeters to centimeters. In this study, we were able to expand this printable size range by FRESH bioprinting a full-size model of an adult human heart from patient-derived magnetic resonance imaging (MRI) data sets. We used alginate as the printing biomaterial to mimic the elastic modulus of cardiac tissue. In addition to achieving high print fidelity on a low-cost printer platform, FRESH-printed alginate proved to create mechanically tunable and suturable models. This demonstrates that large-scale 3D bioprinting of soft hydrogels is possible using FRESH and that cardiac tissue constructs can be produced with potential future applications in surgical training and planning.
- Subjects :
- 3D bioprinting
Materials science
Tissue Scaffolds
Alginates
0206 medical engineering
Biomedical Engineering
Bioprinting
Human heart
Biomaterial
Hydrogels
02 engineering and technology
021001 nanoscience & nanotechnology
020601 biomedical engineering
Surgical training
law.invention
Biomaterials
Tissue scaffolds
law
Self-healing hydrogels
Printing, Three-Dimensional
Humans
0210 nano-technology
Design space
Tissue phantom
Biomedical engineering
Subjects
Details
- ISSN :
- 23739878
- Volume :
- 6
- Issue :
- 11
- Database :
- OpenAIRE
- Journal :
- ACS biomaterials scienceengineering
- Accession number :
- edsair.doi.dedup.....1013d6f13a2bc7a2a36405f4c294dffe