Back to Search Start Over

Mechanics of Capillary Forming of Aligned Carbon Nanotube Assemblies

Authors :
Sameh Tawfick
Anna Brieland-Shoultz
A. John Hart
Zhouzhou Zhao
Wei Lu
Michael De Volder
Matthew R. Maschmann
Jeffery W. Baur
Source :
Langmuir. 29:5190-5198
Publication Year :
2013
Publisher :
American Chemical Society (ACS), 2013.

Abstract

Elastocapillary self-assembly is emerging as a versatile technique to manufacture three-dimensional (3D) microstructures and complex surface textures from arrangements of micro- and nanoscale filaments. Understanding the mechanics of capillary self-assembly is essential to engineering of properties such as shape-directed actuation, anisotropic wetting and adhesion, and mechanical energy transfer and dissipation. We study elastocapillary self-assembly (herein called "capillary forming") of carbon nanotube (CNT) microstructures, combining in situ optical imaging, micromechanical testing, and finite element modeling. By imaging, we identify sequential stages of liquid infiltration, evaporation, and solid shrinkage, whose kinetics relate to the size and shape of the CNT microstructure. We couple these observations with measurements of the orthotropic elastic moduli of CNT forests to understand how the dynamic of shrinkage of the vapor-liquid interface is coupled to the compression of the forest. We compare the kinetics of shrinkage to the rate of evporation from liquid droplets having the same size and geometry. Moreover, we show that the amount of shrinkage during evaporation is governed by the ability of the CNTs to slip against one another, which can be manipulated by the deposition of thin conformal coatings on the CNTs by atomic layer deposition (ALD). This insight is confirmed by finite element modeling of pairs of CNTs as corrugated beams in contact and highlights the coupled role of elasticity and friction in shrinkage and stability of nanoporous solids. Overall, this study shows that nanoscale porosity can be tailored via the filament density and adhesion at contact points, which is important to the development of lightweight multifunctional materials.

Details

ISSN :
15205827 and 07437463
Volume :
29
Database :
OpenAIRE
Journal :
Langmuir
Accession number :
edsair.doi.dedup.....0fec602efd1d0d2a65fe4fbf5b0d54e8
Full Text :
https://doi.org/10.1021/la4002219