Back to Search Start Over

Tissue-specific distribution and modulatory role of the gamma subunit of the Na,K-ATPase

Authors :
Alex G. Therien
Rhoda Blostein
Rivka Goldshleger
Steven J.D. Karlish
Source :
The Journal of biological chemistry. 272(51)
Publication Year :
1998

Abstract

The Na,K-ATPase comprises a catalytic alpha subunit and a glycosylated beta subunit. Another membrane polypeptide, gamma, first described by Forbush et al. (Forbush, B., III, Kaplan, J. H., and Hoffman, J. F. (1978) Biochemistry 17, 3667-3676) associates with alpha and beta in purified kidney enzyme preparations. In this study, we have used a polyclonal anti-gamma antiserum to define the tissue specificity and topology of gamma and to address the question of whether gamma has a functional role. The trypsin sensitivity of the amino terminus of the gamma subunit in intact right-side-out pig kidney microsomes has confirmed that it is a type I membrane protein with an extracellular amino terminus. Western blot analysis shows that gamma subunit protein is present only in membranes from kidney tubules (rat, dog, pig) and not those from axolemma, heart, red blood cells, kidney glomeruli, cultured glomerular cells, alpha1-transfected HeLa cells, all derived from the same (rat) species, nor from three cultured cell lines derived from tubules of the kidney, namely NRK-52E (rat), LLC-PK (pig), or MDCK (dog). To gain insight into gamma function, the effects of the anti-gamma serum on the kinetic behavior of rat kidney sodium pumps was examined. The following evidence suggests that gamma stabilizes E1 conformation(s) of the enzyme and that anti-gamma counteracts this effect: (i) anti-gamma inhibits Na,K-ATPase, and the inhibition increases at acidic pH under which condition the E2(K) --E1 phase of the reaction sequence becomes more rate-limiting, (ii) the oligomycin-stimulated increase in the level of phosphoenzyme was greater in the presence of anti-gamma indicating that the antibody shifts the E1 left and right arrow left and right arrow E2P equilibria toward E2P, and (iii) when the Na+-ATPase reaction is assayed with the Na+ concentration reduced to levels (/=2 mM) which limit the rate of the E1 ----E2P transition, anti-gamma is stimulatory. These observations taken together with evidence that the pig gamma subunit, which migrates as a doublet on polyacrylamide gels, is sensitive to digestion by trypsin, and that Rb+ ions partially protect it against this effect, indicate that the gamma subunit is a tissue-specific regulator which shifts the steady-state equilibria toward E1. Accordingly, binding of anti-gamma disrupts alphabeta-gamma interactions and counteracts these modulatory effects of the gamma subunit.

Details

ISSN :
00219258 and 36673676
Volume :
272
Issue :
51
Database :
OpenAIRE
Journal :
The Journal of biological chemistry
Accession number :
edsair.doi.dedup.....0fdb1e257f43e4a3892037532906ed45