Back to Search Start Over

Efficient perovskite solar cells via improved carrier management

Authors :
Jangwon Seo
Vladimir Bulovic
Jason J. Yoo
Matthew R. Chua
Nam Joong Jeon
Seong Sik Shin
Gabkyung Seo
Tae Gwan Park
Yongli Lu
Juan-Pablo Correa-Baena
Chan Su Moon
Young-Ki Kim
Fabian Rotermund
Moungi G. Bawendi
Source :
Nature. 590:587-593
Publication Year :
2021
Publisher :
Springer Science and Business Media LLC, 2021.

Abstract

Metal halide perovskite solar cells (PSCs) are an emerging photovoltaic technology with the potential to disrupt the mature silicon solar cell market. Great improvements in device performance over the past few years, thanks to the development of fabrication protocols1-3, chemical compositions4,5 and phase stabilization methods6-10, have made PSCs one of the most efficient and low-cost solution-processable photovoltaic technologies. However, the light-harvesting performance of these devices is still limited by excessive charge carrier recombination. Despite much effort, the performance of the best-performing PSCs is capped by relatively low fill factors and high open-circuit voltage deficits (the radiative open-circuit voltage limit minus the high open-circuit voltage)11. Improvements in charge carrier management, which is closely tied to the fill factor and the open-circuit voltage, thus provide a path towards increasing the device performance of PSCs, and reaching their theoretical efficiency limit12. Here we report a holistic approach to improving the performance of PSCs through enhanced charge carrier management. First, we develop an electron transport layer with an ideal film coverage, thickness and composition by tuning the chemical bath deposition of tin dioxide (SnO2). Second, we decouple the passivation strategy between the bulk and the interface, leading to improved properties, while minimizing the bandgap penalty. In forward bias, our devices exhibit an electroluminescence external quantum efficiency of up to 17.2 per cent and an electroluminescence energy conversion efficiency of up to 21.6 per cent. As solar cells, they achieve a certified power conversion efficiency of 25.2 per cent, corresponding to 80.5 per cent of the thermodynamic limit of its bandgap.

Details

ISSN :
14764687 and 00280836
Volume :
590
Database :
OpenAIRE
Journal :
Nature
Accession number :
edsair.doi.dedup.....0fcdc709a490e910062f372ae44699b2