Back to Search Start Over

Population structure of the fish-pathogenic bacterium Flavobacterium psychrophilum

Authors :
Guillaume Achaz
Stanislas Mondot
Jean-François Bernardet
Eric Duchaud
Pierre Nicolas
Catherine Bouchenot
Unité Mathématique Informatique et Génome (MIG)
Institut National de la Recherche Agronomique (INRA)
Unité de recherche Virologie et Immunologie Moléculaires (VIM (UR 0892))
Atelier de BioInformatique (ABI)
Université Pierre et Marie Curie - Paris 6 (UPMC)
Systématique, adaptation, évolution (SAE)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)
Leballeur, Philippe
Source :
HAL, Applied and Environmental Microbiology, Applied and Environmental Microbiology, American Society for Microbiology, 2008, 74 (12), pp.3702-3709. ⟨10.1128/AEM.00244-08⟩, Applied and Environmental Microbiology, 2008, 74 (12), pp.3702-3709. ⟨10.1128/AEM.00244-08⟩, 12. International Congress of Bacteriology and Applied Microbiology, 12. International Congress of Bacteriology and Applied Microbiology, Aug 2008, Istanbul, Turkey. 1 p., 2008, Applied and Environmental Microbiology, 2008, 74(12), pp.3702-3709, Applied and Environmental Microbiology, American Society for Microbiology, 2008, 74(12), pp.3702-3709

Abstract

Flavobacterium psychrophilum is currently one of the main bacterial pathogens hampering the productivity of salmonid farming worldwide, and its control mainly relies on antibiotic treatments. To better understand the population structure of this bacterium and its mode of evolution, we have examined the nucleotide polymorphisms at 11 protein-coding loci of the core genome in a set of 50 isolates. These isolates were selected to represent the broadest possible diversity, originating from 10 different host fish species and four continents. The nucleotide diversity between pairs of sequences amounted to fewer than four differences per kilobase on average, corresponding to a particularly low level of diversity, possibly indicative of a small effective-population size. The recombination rate, however, seemed remarkably high, and as a consequence, most of the isolates harbored unique combinations of alleles (33 distinct sequence types were resolved). The analysis also showed the existence of several clonal complexes with worldwide geographic distribution but marked association with particular fish species. Such an association could reflect preferential routes of transmission and/or adaptive niche specialization. The analysis provided no clues that the initial range of the bacterium was originally limited to North America. Instead, the historical record of the expansion of the pathogen may reflect the spread of a few clonal complexes. As a resource for future epidemiological surveys, a multilocus sequence typing website based on seven highly informative loci is available.

Details

ISSN :
00992240 and 10985336
Database :
OpenAIRE
Journal :
HAL, Applied and Environmental Microbiology, Applied and Environmental Microbiology, American Society for Microbiology, 2008, 74 (12), pp.3702-3709. ⟨10.1128/AEM.00244-08⟩, Applied and Environmental Microbiology, 2008, 74 (12), pp.3702-3709. ⟨10.1128/AEM.00244-08⟩, 12. International Congress of Bacteriology and Applied Microbiology, 12. International Congress of Bacteriology and Applied Microbiology, Aug 2008, Istanbul, Turkey. 1 p., 2008, Applied and Environmental Microbiology, 2008, 74(12), pp.3702-3709, Applied and Environmental Microbiology, American Society for Microbiology, 2008, 74(12), pp.3702-3709
Accession number :
edsair.doi.dedup.....0fbe3cd23d21b77e8c4977873f3694bb