Back to Search Start Over

Application of weakly compressible and truly incompressible SPH to 3-D water collapse in waterworks

Authors :
R. Issa
Eun-Sug Lee
Damien Violeau
Stéphane Ploix
EDF (EDF)
Gestion et Conduite des Systèmes de Production (G-SCOP_GCSP)
Laboratoire des sciences pour la conception, l'optimisation et la production (G-SCOP)
Institut National Polytechnique de Grenoble (INPG)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut National Polytechnique de Grenoble (INPG)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)
Source :
Journal of Hydraulic Research, Journal of Hydraulic Research, Taylor & Francis, 2010, 48 (sup1), pp.50-60. ⟨10.1080/00221686.2010.9641245⟩
Publication Year :
2010
Publisher :
Informa UK Limited, 2010.

Abstract

Two algorithms of the SPH Lagrangian numerical method, the first weakly compressible, the second truly incompressible, are presented and applied to two free-surface three-dimensional flows. The first (schematic) case consists of a water column collapsing in a rectangular tank with a central rectangular obstacle, and allows the comparison and validation of both algorithms. It appears that the incompressible method is superior to predict the total strength experienced by the obstacle, while the weakly compressible method shows weaknesses under this criterion. The second application case, very close to an industrial study, represents a “ski-jump” spillway connecting the reservoir of a river dam to a valley with complex bottom shape. The global flow pattern is compared to laboratory observations from a physical model, leading to satisfactory conclusions which prove SPH has the potential to be a promising method for the design of complex waterworks.

Details

ISSN :
18142079 and 00221686
Volume :
48
Database :
OpenAIRE
Journal :
Journal of Hydraulic Research
Accession number :
edsair.doi.dedup.....0f7a1a546ea03139ba2960e0e81e74c9
Full Text :
https://doi.org/10.1080/00221686.2010.9641245