Back to Search Start Over

Strategic Reasoning with a Bounded Number of Resources: the Quest for Tractability

Authors :
Francesco Belardinelli
Stéphane Demri
Department of Computing [Imperial College London]
Imperial College London
Informatique, BioInformatique, Systèmes Complexes (IBISC)
Université d'Évry-Val-d'Essonne (UEVE)-Université Paris-Saclay
Laboratoire Méthodes Formelles (LMF)
Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Ecole Normale Supérieure Paris-Saclay (ENS Paris Saclay)
Centre National de la Recherche Scientifique (CNRS)
Francesco Belardinelli acknowledges the support of the ANR JCJC Project SVeDaS (ANR-16-CE40- 0021) and Stéphane Demri acknowledges the support of the Centre National de la Recherche Scientifique (C.N.R.S.).
ANR-16-CE40-0021,SVeDaS,Spécification et Vérification des Systèmes basés sur les Données(2016)
Source :
Artificial Intelligence, Artificial Intelligence, 2021, 300, pp.103557. ⟨10.1016/j.artint.2021.103557⟩, Artificial Intelligence, Elsevier, 2021, 300, pp.103557. ⟨10.1016/j.artint.2021.103557⟩
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

International audience; The resource-bounded alternating-time temporal logic RB±ATL combines strategic reasoning with reasoning about resources. Its model-checking problem is known to be 2EXPTIME-complete (the same as its proper extension RB±ATL$^⁎$) and fragments have been identified to lower the complexity.In this work, we consider the variant RB±ATL+ that allows for Boolean combinations of path formulae starting with single temporal operators, but restricted to a single resource, providing an interesting trade-off between temporal expressivity and resource analysis. We show that the model-checking problem for RB±ATL+ restricted to a single agent and a single resource is $\Delta_{2}^{P}$-complete, hence the same as for the standard branching-time temporal logic CTL+. In this case reasoning about resources comes at no extra computational cost. When a fixed finite set of linear-time temporal operators is considered, the model-checking problem drops to PTIME, which includes the special case of RB±ATL restricted to a single agent and a single resource. Furthermore, we show that, with an arbitrary number of agents and a fixed number of resources, the model-checking problem for RB±ATL+ can be solved in EXPTIME using a sophisticated Turing reduction to the parity game problem for alternating vector addition systems with states (AVASS).

Details

Language :
English
ISSN :
00043702
Database :
OpenAIRE
Journal :
Artificial Intelligence, Artificial Intelligence, 2021, 300, pp.103557. ⟨10.1016/j.artint.2021.103557⟩, Artificial Intelligence, Elsevier, 2021, 300, pp.103557. ⟨10.1016/j.artint.2021.103557⟩
Accession number :
edsair.doi.dedup.....0f79213dfba908036b155521646e7073
Full Text :
https://doi.org/10.1016/j.artint.2021.103557⟩