Back to Search Start Over

Hexokinase II Upregulation Contributes to Asiaticoside-Induced Protection of H9c2 Cardioblasts During Oxygen-Glucose Deprivation/Reoxygenation

Authors :
Yanfei Wang
Junmin Xie
Mingyan Yao
Jing Zhang
Xinwei Jia
Source :
Journal of cardiovascular pharmacology. 75(1)
Publication Year :
2019

Abstract

Asiaticoside (AS), one of the main functional components of Centella asiatica, has been reported to protect neurons from ischemia-hypoxia-induced injury. However, the role of AS in myocardial oxygen-glucose deprivation/reoxygenation (OGD/R) injury has not been investigated. The aim of this study was to investigate the role of AS in OGD/R-treated H9c2 cardiomyocytes and the underlying mechanism involved. Cell viability was detected using MTT assay. Cell apoptosis was measured using flow cytometry. The oxidative stress was assessed by detecting the malonaldehyde (MDA) content and activities of superoxide dismutase, glutathione peroxidase, and catalase (CAT). The glucose consumption and lactate production were determined to reflect glycolysis rate. The expression levels of hexokinase II (HK2) were detected using reverse transcription quantitative polymerase chain reaction and Western blot. H9c2 cells were transfected with small interfering RNA targeting HK2 (si-HK2) to knockdown HK2. Results showed that AS improved cell viability and inhibited apoptosis in OGD/R-injured H9c2 cells. AS pretreatment prevented OGD/R-induced oxidative stress, as evidenced by the decreased MDA content, and increased activities of superoxide dismutase, glutathione peroxidase, and CAT. The decreased glucose consumption and lactate production in OGD/R-injured H9c2 cells were reversed after AS treatment. Mechanically, AS induced the expression of HK2 in OGD/R-injured H9c2 cells. Knockdown of HK2 abolished the protective effects of AS on OGD/R-injured H9c2 cells. In conclusion, the protective effects of AS on cardiomyocytes from OGD/R-induced injury were mediated at least partly by upregulating HK2.

Details

ISSN :
15334023
Volume :
75
Issue :
1
Database :
OpenAIRE
Journal :
Journal of cardiovascular pharmacology
Accession number :
edsair.doi.dedup.....0f691c6b4485a0492147d2b276ea8544