Back to Search Start Over

Deep active learning for Interictal Ictal Injury Continuum EEG patterns

Authors :
Sahar F. Zafar
M. Brandon Westover
Christa B. Swisher
Emily J. Gilmore
Hiba A. Haider
Wendong Ge
Jong Woo Lee
Aline Herlopian
Jimeng Sun
Sarah E. Schmitt
Nicolas Gaspard
Gamaleldin Osman
Jonathan J. Halford
Marcus Ng
Emily Johnson
Monica B. Dhakar
Andres Rodriguez
Peter W. Kaplan
Sungtae An
Jin Jing
Susan T. Herman
Rani A. Sarkis
Jennifer A. Kim
Mohammad Tabaeizadeh
Aaron F. Struck
Eric Rosenthal
Brian Appavu
Shenda Hong
Ioannis Karakis
Jay Pathmanathan
Source :
Journal of neuroscience methods, 351, J Neurosci Methods
Publication Year :
2021

Abstract

Objectives: Seizures and seizure-like electroencephalography (EEG) patterns, collectively referred to as “ictal interictal injury continuum” (IIIC) patterns, are commonly encountered in critically ill patients. Automated detection is important for patient care and to enable research. However, training accurate detectors requires a large labeled dataset. Active Learning (AL) may help select informative examples to label, but the optimal AL approach remains unclear. Methods: We assembled >200,000 h of EEG from 1,454 hospitalized patients. From these, we collected 9,808 labeled and 120,000 unlabeled 10-second EEG segments. Labels included 6 IIIC patterns. In each AL iteration, a Dense-Net Convolutional Neural Network (CNN) learned vector representations for EEG segments using available labels, which were used to create a 2D embedding map. Nearest-neighbor label spreading within the embedding map was used to create additional pseudo-labeled data. A second Dense-Net was trained using real- and pseudo-labels. We evaluated several strategies for selecting candidate points for experts to label next. Finally, we compared two methods for class balancing within queries: standard balanced-based querying (SBBQ), and high confidence spread-based balanced querying (HCSBBQ). Results: Our results show: 1) Label spreading increased convergence speed for AL. 2) All query criteria produced similar results to random sampling. 3) HCSBBQ query balancing performed best. Using label spreading and HCSBBQ query balancing, we were able to train models approaching expert-level performance across all pattern categories after obtaining ∼7000 expert labels. Conclusion: Our results provide guidance regarding the use of AL to efficiently label large EEG datasets in critically ill patients.<br />SCOPUS: ar.j<br />info:eu-repo/semantics/published

Details

Language :
English
Database :
OpenAIRE
Journal :
Journal of neuroscience methods, 351, J Neurosci Methods
Accession number :
edsair.doi.dedup.....0f5967f6a461ff7a839bb6e8cc9d779f