Back to Search Start Over

On rings whose modules have nonzero homomorphisms to nonzero submodules

Authors :
Y. Tolooei
M. R. Vedadi
Source :
Recercat: Dipósit de la Recerca de Catalunya, Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya), Dipòsit Digital de Documents de la UAB, Universitat Autònoma de Barcelona, Publicacions Matemàtiques; Vol. 57, Núm. 1 (2013); p. 107-122, Publ. Mat. 57, no. 1 (2013), 107-122, Recercat. Dipósit de la Recerca de Catalunya, instname
Publication Year :
2021

Abstract

We carry out a study of rings $R$ for which $\operatorname{Hom}_R(M,N)\neq 0$ for all nonzero $ N\leq M_R$. Such rings are called retractable. For a retractable ring, Artinian condition and having Krull dimension are equivalent. Furthermore, a right Artinian ring in which prime ideals commute is precisely a right Noetherian retractable ring. Retractable rings are characterized in several ways. They form a class of rings that properly lies between the class of pseudo-Frobenius rings, and the class of max divisible rings for which the converse of Schur's lemma holds. For several types of rings, including commutative rings, retractability is equivalent to semi-Artinian condition. We show that a Köthe ring $R$ is an Artinian principal ideal ring if and only if it is a certain retractable ring, and determine when $R$ is retractable.

Details

Database :
OpenAIRE
Journal :
Recercat: Dipósit de la Recerca de Catalunya, Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya), Dipòsit Digital de Documents de la UAB, Universitat Autònoma de Barcelona, Publicacions Matemàtiques; Vol. 57, Núm. 1 (2013); p. 107-122, Publ. Mat. 57, no. 1 (2013), 107-122, Recercat. Dipósit de la Recerca de Catalunya, instname
Accession number :
edsair.doi.dedup.....0f587f658b98cd7dfe9edf850a26e877