Back to Search Start Over

Endothelial cell colonization and angiogenic potential of combined nano- and micro-fibrous scaffolds for bone tissue engineering

Authors :
Kadriye Tuzlakoglu
C. James Kirkpatrick
Kirsten Peters
Ronald E. Unger
Sabine Fuchs
Manuela E. Gomes
Marina I. Santos
Erhan Pişkin
Rui L. Reis
Kimya Mühendisliği
Universidade do Minho
Source :
Repositório Científico de Acesso Aberto de Portugal, Repositório Científico de Acesso Aberto de Portugal (RCAAP), instacron:RCAAP
Publication Year :
2008
Publisher :
Elsevier BV, 2008.

Abstract

Presently the majority of tissue engineering approaches aimed at regenerating bone relies only on postimplantation vascularization. Strategies that include seeding endothelial cells (ECs) on biomaterials and promoting their adhesion, migration and functionality might be a solution for the formation of vascularized bone. Nano/micro-fiber-combined scaffolds have an innovative structure, inspired by extracellular matrix (ECM) that combines a nano-network, aimed to promote cell adhesion, with a micro-fiber mesh that provides the mechanical support. In this work we addressed the influence of this nano-network on growth pattern, morphology, inflammatory expression profile, expression of structural proteins, homotypic interactions and angiogenic potential of human EC cultured on a scaffold made of a blend of starch and poly(caprolactone). The nano-network allowed cells to span between individual micro-fibers and influenced cell morphology. Furthermore, on nano-fibers as well as on micro-fibers ECs maintained the physiological expression pattern of the structural protein vimentin and PECAM-1 between adjacent cells. In addition, ECs growing on the nano/micro-fiber-combined scaffold were sensitive to pro-inflammatory stimulus. Under pro-angiogenic conditions in vitro, the ECM-like nano-network provided the structural and organizational stability for ECs’ migration and organization into capillary-like structures. The architecture of nano/micro-fiber-combined scaffolds elicited and guided the 3D distribution of ECs without compromising the structural requirements for bone regeneration.<br />M.I. Santos would like to acknowledge the Portuguese Foundation for Science and Technology (FCT) for her PhD scholarship (SFRH/BD/13428/2003). This work was partially supported by FCT through funds from POCTI and/or FEDER programs and by the European Union funded STREP Project HIPPOCRATES (NMP3-CT-2003-505758). This work was carried out under the scope of the European NoE EXPERTISSUES (NMP3-CT-2004-500283).

Details

ISSN :
01429612
Volume :
29
Database :
OpenAIRE
Journal :
Biomaterials
Accession number :
edsair.doi.dedup.....0f4930dd7f0cfaa24727ad4d13f32775
Full Text :
https://doi.org/10.1016/j.biomaterials.2008.07.033