Back to Search
Start Over
SHCNet: A semi-supervised hypergraph convolutional networks based on relevant feature selection for hyperspectral image classification
- Source :
- Pattern Recognition Letters, Pattern Recognition Letters, 2023, 165 (January), pp.98-106. ⟨10.1016/j.patrec.2022.12.004⟩
- Publication Year :
- 2023
- Publisher :
- Elsevier BV, 2023.
-
Abstract
- International audience; Hyperspectral imagery classification is a challenging task due to the large number of spectral bands, and low number of labeled samples. To overcome these issues, we propose a novel approach for hyperspectral image classification based on feature selection and semi-supervised hypergraph convolutional network working with small number of labeled samples. Firstly, we propose a new unsupervised feature selection method based on an information theoretic criterion. Relevant spectral features are automatically selected while preserving the physical properties of hyperspectral data. Secondly, we construct a spectro-spatial hypergraph in order to represent the complex relationships between pixels. Finally, we propose a semi-supervised hypergraph convolutional network which integrates local vertex features and hypergraph topology in the convolutional layers. The aim of this step is to preserve the spectro-spatial features and to cope with the high correlation between hypernodes during classification. The main advantage of the proposed approach is to allow the automatic selection of relevant spectral bands while preserving the spatial and spectral features. In addition, by accounting for the relationship between pixels leads to improved classification results even when the number of labeled samples is low. Experiments are conducted on two real hyperspectral images show that the proposed approach reaches competitive good performances, and achieves better classification performances compared to state-of-the-art methods.
- Subjects :
- [INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing
Artificial Intelligence
hyperspectral image classification
Signal Processing
Unsupervised feature selection
[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]
Computer Vision and Pattern Recognition
hypergraph convolutional network
Software
dimensionality reduction
[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]
Subjects
Details
- ISSN :
- 01678655
- Volume :
- 165
- Database :
- OpenAIRE
- Journal :
- Pattern Recognition Letters
- Accession number :
- edsair.doi.dedup.....0f3c7c27d96a4b469d594453ff79ef18