Back to Search
Start Over
Machine Learning Tools Set for Natural Gas Fuel Cell System Design
- Source :
- ECS Transactions. 103:2283-2292
- Publication Year :
- 2021
- Publisher :
- The Electrochemical Society, 2021.
-
Abstract
- This study is focusing on leveraging the system design tools set for next-generation solid oxide fuel cell (SOFC) based natural gas fuel cell (NGFC) system. Conventionally, system design and optimization of NGFC systems rely heavily on traditional reduced order model (ROM) techniques and designers’ experience level. For overcoming the technical barriers of system design, multiple multi-physics models and machine learning (ML) tools have been utilized to automate the conceptual design process and enhance the reliability of solutions for the NGFC system. The proposed tools set includes a physics-informed ML tool for automated ROM construction that leverages advances in deep neural networks to significantly reduce ROM prediction error for the NGFC power island compared to traditional approaches. The constructed physics-informed ML ROM can be used in system design and optimization tools set Institute for the Design of Advanced Energy Systems (IDAES) Process Systems Engineering (PSE) framework. The tools set also provides user-friendly graphic user interface built within Jupyter Notebooks, and the whole tools set is open-source public available.
- Subjects :
- Computer science
business.industry
Process (engineering)
Reliability (computer networking)
Machine learning
computer.software_genre
Power (physics)
Set (abstract data type)
Conceptual design
Systems design
Solid oxide fuel cell
Artificial intelligence
business
computer
Graphical user interface
Subjects
Details
- ISSN :
- 19386737 and 19385862
- Volume :
- 103
- Database :
- OpenAIRE
- Journal :
- ECS Transactions
- Accession number :
- edsair.doi.dedup.....0efa2dd2880a58601fdcc6663a3ee335
- Full Text :
- https://doi.org/10.1149/10301.2283ecst