Back to Search Start Over

The Histone Demethylase UTX Promotes Brown Adipocyte Thermogenic Program Via Coordinated Regulation of H3K27 Demethylation and Acetylation

Authors :
Liqing Yu
Vincent Rehder
Lin Zha
Bingzhong Xue
Rui Wu
Hang Shi
Fenfen Li
Liana Artinian
Houjie Liang
Source :
Journal of Biological Chemistry. 290:25151-25163
Publication Year :
2015
Publisher :
Elsevier BV, 2015.

Abstract

Brown adipocytes function to dissipate energy as heat through adaptive thermogenesis. Understanding the molecular mechanisms underlying the brown fat thermogenic program may provide insights for the development of therapeutic approaches in the treatment of obesity. Most studies investigating the mechanisms underlying brown fat development focus on genetic mechanisms; little is known about the epigenetic mechanisms in this process. We have discovered that ubiquitously transcribed tetratricopeptide repeat on chromosome X (UTX), a histone demethylase for di- or tri-methylated histone 3 lysine 27 (H3K27me2/3), plays a potential role in regulating brown adipocyte thermogenic program. We found that UTX is up-regulated during brown adipocyte differentiation and by cold exposure in both brown adipose tissue (BAT) and white adipose tissue (WAT) of mice, suggesting a potential role in thermogenesis. Inactivation of UTX down-regulates brown fat specific gene expression, while overexpression of UTX does the opposite. Notably, activation of β adrenergic signaling recruits UTX to the UCP1 and PGC1α promoters, leading to decreased H3K27me3, a histone transcriptional repressive mark. UTX demethylates H3K27me3 and subsequently interacts with the histone acetyltransferase (HAT) protein CBP, resulting in increased H3K27 acetylation (H3K27ac), a histone transcriptional active mark. UTX positively regulate brown adipocyte thermogenic program through coordinated control of demethylating H3K27me3 and acetylating H3K27, switching the transcriptional repressive state to the transcriptional active state at the promoters of UCP1 and PGC1α. We conclude that UTX may play a potential role in regulation of brown adipocyte gene expression and may mediate β adrenergic activation of brown fat function.

Details

ISSN :
00219258
Volume :
290
Database :
OpenAIRE
Journal :
Journal of Biological Chemistry
Accession number :
edsair.doi.dedup.....0eeb73bd8cc295628347e6e754025701
Full Text :
https://doi.org/10.1074/jbc.m115.662650