Back to Search Start Over

Phosphorylation of MCM4 at Sites Inactivating DNA Helicase Activity of the MCM4-MCM6-MCM7 Complex during Epstein-Barr Virus Productive Replication

Authors :
Tatsuya Tsurumi
Yasushi Kawaguchi
Yukio Ishimi
Tohru Daikoku
Hiroki Isomura
Satoko Iwahori
Noriko Shirata
Ayumi Kudoh
Source :
Journal of Virology. 80:10064-10072
Publication Year :
2006
Publisher :
American Society for Microbiology, 2006.

Abstract

Induction of Epstein-Barr virus (EBV) lytic replication blocks chromosomal DNA replication notwithstanding an S-phase-like cellular environment with high cyclin-dependent kinase (CDK) activity. We report here that the phosphorylated form of MCM4, a subunit of the MCM complex essential for chromosomal DNA replication, increases with progression of lytic replication, Thr-19 and Thr-110 being CDK2/CDK1 targets whose phosphorylation inactivates MCM4-MCM6-MCM7 (MCM4-6-7) complex-associated DNA helicase. Expression of EBV-encoded protein kinase (EBV-PK) in HeLa cells caused phosphorylation of these sites on MCM4, leading to cell growth arrest. In vitro, the sites of MCM4 of the MCM4-6-7 hexamer were confirmed to be phosphorylated with EBV-PK, with the same loss of helicase activity as with CDK2/cyclin A. Introducing mutations in the N-terminal six Ser and Thr residues of MCM4 reduced the inhibition by CDK2/cyclin A, while EBV-PK inhibited the helicase activities of both wild-type and mutant MCM4-6-7 hexamers, probably since EBV-PK can phosphorylate MCM6 and another site(s) of MCM4 in addition to the N-terminal residues. Therefore, phosphorylation of the MCM complex by redundant actions of CDK and EBV-PK during lytic replication might provide one mechanism to block chromosomal DNA replication in the infected cells through inactivation of DNA unwinding by the MCM4-6-7 complex.

Details

ISSN :
10985514 and 0022538X
Volume :
80
Database :
OpenAIRE
Journal :
Journal of Virology
Accession number :
edsair.doi.dedup.....0eddcb3719417509d67eecce511e0559