Back to Search Start Over

Solubilization and partial purification of the rabbit parotid Na/K/Cl-dependent bumetanide binding site

Authors :
George Jn
Turner Rj
Source :
The Journal of Membrane Biology. 113:203-210
Publication Year :
1990
Publisher :
Springer Science and Business Media LLC, 1990.

Abstract

We demonstrate that the high affinity bumetanide binding site of the rabbit parotid acinar cell can be extracted from a basolateral membrane fraction using relatively low concentrations (0.07%, wt/vol; 1 mg membrane protein/ml) of the nonionic detergent Triton X-100. This extracted site cannot be sedimented by ultracentrifugation at 100,000 x g x 1 hr. Bumetanide binding to this site retains the ionic characteristics of bumetanide binding to native membranes but shows a fivefold increase in binding affinity (Kd = 0.57 +/- 0.15 microM vs. Kd = 3.3 +/- 0.7 microM for native membranes). Inactivation of the extracted bumetanide binding site observed at detergent/protein ratios greater than 1 can be prevented or (partially) reversed by the addition of exogenous lipid (0.2% soybean phosphatidylcholine). When the 0.07% Triton extract is fractionated by sucrose density gradient centrifugation in 0.24% Triton X-100, 0.2% exogenous lipid and 200 mM salt, the high affinity bumetanide binding site sediments as a single band with S20,w = 8.8 +/- 0.8 S. This corresponds to a molecular weight approximately 200 kDa for the bumetanide binding protein-detergent-lipid complex and represents a sevenfold purification of this site relative to the starting membrane fraction. In contrast to previous attempts to purify Na/K/Cl cotransport proteins and their associated bumetanide binding sites, the present method avoids harsh detergent treatment as well as direct covalent modification (inactivation) of the transporter itself. As a consequence, one can follow the still active protein through a series of extraction and purification steps by directly monitoring its bumetanide binding properties.

Details

ISSN :
14321424 and 00222631
Volume :
113
Database :
OpenAIRE
Journal :
The Journal of Membrane Biology
Accession number :
edsair.doi.dedup.....0edb74908195b3b82c633c9d9fa8a5c3
Full Text :
https://doi.org/10.1007/bf01870072