Back to Search Start Over

From local spectral species to global spectral communities: A benchmark for ecosystem diversity estimate by remote sensing

Authors :
Kate S. He
Harini Nagendra
Michael Förster
Martin Wegmann
Thomas W. Gillespie
Vítĕzslav Moudrý
Birgit Kleinschmit
Duccio Rocchini
Carl Beierkuhnlein
Jean-Baptiste Féret
Marco Malavasi
Nicole Salvatori
Florian de Boissieu
Davnah Payne
Heidi C. Hauffe
Carol X. Garzon-Lopez
Alessandro Chiarucci
Petra Šímová
Jonathan Lenoir
Michele Torresani
University of Bologna/Università di Bologna
Università degli Studi di Udine - University of Udine [Italie]
University of Bayreuth
Ecologie fonctionnelle et biogéochimie des sols et des agro-écosystèmes (UMR Eco&Sols)
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut de Recherche pour le Développement (IRD)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro - Montpellier SupAgro
Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)
Département Performances des systèmes de production et de transformation tropicaux (Cirad-PERSYST)
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)
Technical University of Berlin / Technische Universität Berlin (TU)
Universidad de los Andes [Bogota] (UNIANDES)
University of California (UC)
Fondazione Edmund Mach - Edmund Mach Foundation [Italie] (FEM)
Ecologie et Dynamique des Systèmes Anthropisés - UMR CNRS 7058 (EDYSAN)
Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS)
Czech University of Life Sciences Prague (CZU)
PES University [Bengaluru]
University of Bern
Free University of Bozen-Bolzano
Territoires, Environnement, Télédétection et Information Spatiale (UMR TETIS)
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-AgroParisTech-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Horizon 2020 Framework ProgrammeCentre National d’Etudes Spatiales
ANR-17-CE32-0001,BioCop,Suivi de la biodiversité tropicale avec les satellites Sentinel-2 du programme Copernicus(2017)
Rocchini D.
Salvatori N.
Beierkuhnlein C.
Chiarucci A.
de Boissieu F.
Forster M.
Garzon-Lopez C.X.
Gillespie T.W.
Hauffe H.C.
He K.S.
Kleinschmit B.
Lenoir J.
Malavasi M.
Moudry V.
Nagendra H.
Payne D.
Simova P.
Torresani M.
Wegmann M.
Feret J.-B.
Rocchini, D.
Salvatori, N.
Beierkuhnlein, C.
Chiarucci, A.
de Boissieu, F.
Forster, M.
Garzon-Lopez, C. X.
Gillespie, T. W.
Hauffe, H. C.
He, K. S.
Kleinschmit, B.
Lenoir, J.
Malavasi, M.
Moudry, V.
Nagendra, H.
Payne, D.
Simova, P.
Torresani, M.
Wegmann, M.
Feret, J. -B.
University of Bologna
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut de Recherche pour le Développement (IRD)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)
Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Technical University Berlin
University of California
Source :
Ecological Informatics, Ecological Informatics, 2021, 61, pp.101195. ⟨10.1016/j.ecoinf.2020.101195⟩, Ecological Informatics, Elsevier, 2021, 61, pp.101195. ⟨10.1016/j.ecoinf.2020.101195⟩
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

In the light of unprecedented change in global biodiversity, real-time and accurate ecosystem and biodiversity assessments are becoming increasingly essential. Nevertheless, estimation of biodiversity using ecological field data can be difficult for several reasons. For instance, for very large areas, it is challenging to collect data that provide reliable information. Some of these restrictions in Earth observation can be avoided through the use ofremote sensingapproaches. Various studies have estimated biodiversity on the basis of the Spectral Variation Hypothesis (SVH). According to this hypothesis, spectral heterogeneity over the different pixel units of a spatial grid reflects a higher niche heterogeneity, allowing more organisms to coexist. Recently, the spectral species concept has been derived, following the consideration that spectral heterogeneity at a landscape scale corresponds to a combination of subspaces sharing a similarspectral signature. With the use of high resolution remote sensing data, on a local scale, these subspaces can be identified as separate spectral entities, the so called “spectral species”. Our approach extends this concept over wide spatial extents and to a higher level of biological organization. We applied this method toMODISimagery data across Europe. Obviously, in this case, a spectral species identified by MODIS is not associated to a singleplant speciesin the field but rather to a species assemblage, habitat, or ecosystem. Based on such spectral information, we propose a straightforward method to deriveα- (local relative abundance and richness of spectral species) andβ-diversity (turnover of spectral species) maps over wide geographical areas.

Details

Language :
English
ISSN :
15749541
Database :
OpenAIRE
Journal :
Ecological Informatics, Ecological Informatics, 2021, 61, pp.101195. ⟨10.1016/j.ecoinf.2020.101195⟩, Ecological Informatics, Elsevier, 2021, 61, pp.101195. ⟨10.1016/j.ecoinf.2020.101195⟩
Accession number :
edsair.doi.dedup.....0e64713ccac5e4955a66731a73376305
Full Text :
https://doi.org/10.1016/j.ecoinf.2020.101195⟩