Back to Search Start Over

Conceptual Surface Electrochemistry and New Redox Descriptors

Authors :
Jean-Sébastien Filhol
Marie-Liesse Doublet
Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM)
Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC)
Réseau sur le stockage électrochimique de l'énergie (RS2E)
Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)
Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)
Source :
Journal of Physical Chemistry C, Journal of Physical Chemistry C, American Chemical Society, 2014, 118 (33), pp.19023-19031. ⟨10.1021/jp502296p⟩, Journal of Physical Chemistry C, 2014, 118 (33), pp.19023-19031. ⟨10.1021/jp502296p⟩
Publication Year :
2014
Publisher :
HAL CCSD, 2014.

Abstract

International audience; This paper aims at enlightening the link between surface properties, conceptual density functional theory (DFT), and electrochemistry. The energy of a metallic charged surface is expanded into classical terms such as electrochemical potential or chemical hardness and into new terms such as electromechanical coupling vector, electrochemical Hessian matrix change, etc. These quantities are shown to be crucial parameters to understand interface electrochemistry and in particular the surface zero-charge potential, the capacitance and its derivatives, and the surface structural polarization at the atomic scale. Furthermore, the Fukui function initially introduced to rationalize molecular reactivity is here shown to directly probe the electrochemical activity of the surface. First, it gives the spatial repartition on the surface of the charge added during an electrochemical step, and second it quantifies the electrochemical parameters of the system: the electrochemical potential and the electromechanical coupling vector mainly arise from the interaction of the Fukui function with the local surface dipole and the nucleus electric field, while the capacitance mostly comes from the Fukui function self-electrostatic interaction. The electrochemical Hessian change matrix controls part of the bond modifications induced by the electrochemical process and directly depends on the Fukui function derivatives with respect to atomic displacements. This description not only allows linking the electrochemical bond modification with conceptual DFT and molecular orbital theories but can also be used quantitatively to extract electrochemical properties from response theory.

Details

Language :
English
ISSN :
19327447 and 19327455
Database :
OpenAIRE
Journal :
Journal of Physical Chemistry C, Journal of Physical Chemistry C, American Chemical Society, 2014, 118 (33), pp.19023-19031. ⟨10.1021/jp502296p⟩, Journal of Physical Chemistry C, 2014, 118 (33), pp.19023-19031. ⟨10.1021/jp502296p⟩
Accession number :
edsair.doi.dedup.....0e5ddbc674a3861973fa1c4f8bc81326
Full Text :
https://doi.org/10.1021/jp502296p⟩