Back to Search Start Over

Understanding the Self-Assembly of Proteins onto Gold Nanoparticles and Quantum Dots Driven by Metal-Histidine Coordination

Authors :
Fadi Aldeek
Goutam Palui
Hedi Mattoussi
Malak Safi
Naiqian Zhan
Source :
ACS Nano. 7:10197-10210
Publication Year :
2013
Publisher :
American Chemical Society (ACS), 2013.

Abstract

Coupling of polyhistidine-appended biomolecules to inorganic nanocrystals driven by metal-affinity interactions is a greatly promising strategy to form hybrid bioconjugates. It is simple to implement and can take advantage of the fact that polyhistidine-appended proteins and peptides are routinely prepared using well established molecular engineering techniques. A few groups have shown its effectiveness for coupling proteins onto Zn- or Cd-rich semiconductor quantum dots (QDs). Expanding this conjugation scheme to other metal-rich nanoparticles (NPs) such as AuNPs would be of great interest to researchers actively seeking effective means for interfacing nanostructured materials with biology. In this report, we investigated the metal-affinity driven self-assembly between AuNPs and two engineered proteins, a His7-appended maltose binding protein (MBP-His) and a fluorescent His6-terminated mCherry protein. In particular, we investigated the influence of the capping ligand affinity to the nanoparticle surface, its density, and its lateral extension on the AuNP-protein self-assembly. Affinity gel chromatography was used to test the AuNP-MPB-His7 self-assembly, while NP-to-mCherry-His6 binding was evaluated using fluorescence measurements. We also assessed the kinetics of the self-assembly between AuNPs and proteins in solution, using time-dependent changes in the energy transfer quenching of mCherry fluorescent proteins as they immobilize onto the AuNP surface. This allowed determination of the dissociation rate constant, Kd(-1) ∼ 1-5 nM. Furthermore, a close comparison of the protein self-assembly onto AuNPs or QDs provided additional insights into which parameters control the interactions between imidazoles and metal ions in these systems.

Details

ISSN :
1936086X and 19360851
Volume :
7
Database :
OpenAIRE
Journal :
ACS Nano
Accession number :
edsair.doi.dedup.....0e46b77a765e67fbe3a5ac789dbc97d7