Back to Search
Start Over
A Dimension-Free Reverse Logarithmic Sobolev Inequality for Low-Complexity Functions in Gaussian Space
- Source :
- Lecture Notes in Mathematics ISBN: 9783030360191, Lecture Notes in Mathematics, Lecture Notes in Mathematics-Geometric Aspects of Functional Analysis, Geometric Aspects of Functional Analysis-Israel Seminar (GAFA) 2017-2019 Volume I
- Publication Year :
- 2020
- Publisher :
- Springer International Publishing, 2020.
-
Abstract
- We discuss new proofs, and new forms, of a reverse logarithmic Sobolev inequality, with respect to the standard Gaussian measure, for low-complexity functions, measured in terms of Gaussian-width. In particular, we provide a dimension-free improvement for a related result given in Eldan (Geom Funct Anal 28:1548–1596, 2018).
- Subjects :
- Mathematics::Functional Analysis
Pure mathematics
Gaussian
010102 general mathematics
Mathematical proof
Gaussian measure
Space (mathematics)
01 natural sciences
Low complexity
010104 statistics & probability
symbols.namesake
Dimension (vector space)
symbols
0101 mathematics
GEOM
Mathematics
Logarithmic sobolev inequality
Subjects
Details
- ISBN :
- 978-3-030-36019-1
978-3-030-36020-7 - ISSN :
- 00758434 and 16179692
- ISBNs :
- 9783030360191 and 9783030360207
- Database :
- OpenAIRE
- Journal :
- Lecture Notes in Mathematics ISBN: 9783030360191, Lecture Notes in Mathematics, Lecture Notes in Mathematics-Geometric Aspects of Functional Analysis, Geometric Aspects of Functional Analysis-Israel Seminar (GAFA) 2017-2019 Volume I
- Accession number :
- edsair.doi.dedup.....0e410d0c64715242daf1779a628488ca
- Full Text :
- https://doi.org/10.1007/978-3-030-36020-7_12