Back to Search
Start Over
Non-Bayesian Testing of a Stochastic Prediction
- Source :
- The Review of Economic Studies. 73(4):893-906
- Publication Year :
- 2006
-
Abstract
- We propose a method to test a prediction of the distribution of a stochastic process. In a non-Bayesian, non-parametric setting, a predicted distribution is tested using a realization of the stochastic process. A test associates a set of realizations for each predicted distribution, on which the prediction passes, so that if there are no type I errors, a prediction assigns probability 1 to its test set. Nevertheless, these test sets can be "small", in the sense that "most" distributions assign it probability 0, and hence there are "few" type II errors. It is also shown that there exists such a test that cannot be manipulated, in the sense that an uninformed predictor, who is pretending to know the true distribution, is guaranteed to fail on an uncountable number of realizations, no matter what randomized prediction he employs. The notion of a small set we use is category I, described in more detail in the paper. Copyright 2006, Wiley-Blackwell.
- Subjects :
- Discrete mathematics
Economics and Econometrics
Stochastic process
Existential quantification
05 social sciences
Bayesian probability
Small set
Set (abstract data type)
Test set
0502 economics and business
Uncountable set
050207 economics
Algorithm
Realization (probability)
050205 econometrics
Mathematics
Subjects
Details
- Volume :
- 73
- Issue :
- 4
- Database :
- OpenAIRE
- Journal :
- The Review of Economic Studies
- Accession number :
- edsair.doi.dedup.....0e120f3763187b2fc5edd1b9005a1968
- Full Text :
- https://doi.org/10.1111/j.1467-937X.2006.00401.x