Back to Search Start Over

An Energy Optimization Strategy for Hybrid Power Ships under Load Uncertainty Based on Load Power Prediction and Improved NSGA-II Algorithm

Authors :
Xuyang Wang
Yide Wang
Diju Gao
Xiaobin Xu
Tianzhen Wang
Shanghai Maritime University
Institut d'Électronique et des Technologies du numéRique (IETR)
Université de Nantes (UN)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)
Université de Nantes (UN)-Université de Rennes 1 (UR1)
Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes)
Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)
Nantes Université (NU)-Université de Rennes 1 (UR1)
Source :
Energies, Energies, 2018, 11 (7), pp.1699. ⟨10.3390/en11071699⟩, Energies, Vol 11, Iss 7, p 1699 (2018), Energies, MDPI, 2018, 11 (7), pp.1699. ⟨10.3390/en11071699⟩, Volume 11, Issue 7
Publication Year :
2018
Publisher :
HAL CCSD, 2018.

Abstract

In this paper, a hybrid ship powered by diesel generator sets and power batteries in series is considered. By analyzing the characteristics of hybrid ship cycle operating conditions, the load power of the hybrid ship under load uncertainty is firstly predicted. Then, considering the economy, emissions and continuous navigation time (endurance) of the hybrid ship, an energy optimization strategy based on the predicted load power is proposed to achieve the goal of minimum fuel consumption, minimum emissions and maximum endurance of ship operation. The experimental results show that, compared with the fuzzy logic rules based strategy, the fuel economy of the ship is increased by 9.6% and the ship&rsquo<br />s endurance is increased by 24% for the proposed strategy.

Details

Language :
English
ISSN :
19961073
Database :
OpenAIRE
Journal :
Energies, Energies, 2018, 11 (7), pp.1699. ⟨10.3390/en11071699⟩, Energies, Vol 11, Iss 7, p 1699 (2018), Energies, MDPI, 2018, 11 (7), pp.1699. ⟨10.3390/en11071699⟩, Volume 11, Issue 7
Accession number :
edsair.doi.dedup.....0dfcb84ee821a89ca82b8b3e30e48a7f
Full Text :
https://doi.org/10.3390/en11071699⟩