Back to Search Start Over

Strength properties of a Drucker–Prager porous medium reinforced by rigid particles

Authors :
Z. He
Djimedo Kondo
Luc Dormieux
Laboratoire de Mécanique de Lille - FRE 3723 (LML)
Université de Lille, Sciences et Technologies-Centrale Lille-Centre National de la Recherche Scientifique (CNRS)
Modélisation et expérimentation multi-échelle pour les solides hétérogènes (multi-échelle)
Laboratoire Navier (navier umr 8205)
Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)
Institut Jean le Rond d'Alembert (DALEMBERT)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)
Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Sciences et Technologies-Ecole Centrale de Lille-Université de Lille
Source :
International Journal of Plasticity, International Journal of Plasticity, Elsevier, 2013, 51, pp.218-240. ⟨10.1016/j.ijplas.2013.05.003⟩, International Journal of Plasticity, 2013, 51, pp.218-240. ⟨10.1016/j.ijplas.2013.05.003⟩
Publication Year :
2013
Publisher :
Elsevier BV, 2013.

Abstract

International audience; In the present study, we investigate the strength properties of ductile porous materials reinforced by rigid particles. The microporous medium is constituted of a Drucker-Prager solid phase containing spherical voids; its behavior is described by means of an elliptic criterion (issued from a modified secant moduli approach) whose corresponding support function is determined. The latter is then implemented in a limit analysis approach in which a careful attention is paid for the contribution of the inclusion matrix-interface. This delivers parametric equations of the effective strength properties of the porous material reinforced by rigid particles. The predictions are compared to available results obtained by means of variational homogenization methods successively applied for micro-to-meso and then for meso-to-macro scales transitions. Moreover, additional static solutions are derived and compared to the kinematics limit analysis ones in order to prove the accuracy of the strength predictions under isotropic loading. Thereafter, the theoretical predictions (by the two methods) under shear loading are assessed by comparison with experimental data. The influences of mineralogical compositions and porosity are also discussed. Finally, we derive an approximate closed-form expression of the macroscopic strength which proves to be very accurate. Then, we examine in Appendix the particular case of a von Mises solid phase of the porous matrix for which our results are compared to the available estimates.

Details

ISSN :
07496419
Volume :
51
Database :
OpenAIRE
Journal :
International Journal of Plasticity
Accession number :
edsair.doi.dedup.....0dc36ebb5f33b42b741c12b9223a02a5
Full Text :
https://doi.org/10.1016/j.ijplas.2013.05.003