Back to Search Start Over

Eternal solutions to a singular diffusion equation with critical gradient absorption

Authors :
Philippe Laurençot
Razvan Gabriel Iagar
'Simion Stoilow' Institute of Mathematics (IMAR)
Romanian Academy of Sciences
Institut de Mathématiques de Toulouse UMR5219 (IMT)
Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)
Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)
Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
Source :
Nonlinearity, Nonlinearity, IOP Publishing, 2013, 26, pp.3169-3195. ⟨10.1088/0951-7715/26/12/3169⟩, Nonlinearity, 2013, 26, pp.3169-3195. ⟨10.1088/0951-7715/26/12/3169⟩
Publication Year :
2013
Publisher :
HAL CCSD, 2013.

Abstract

The existence of nonnegative radially symmetric eternal solutions of exponential self-similar type $u(t,x)=e^{-p\beta t/(2-p)} f_\beta(|x|e^{-\beta t};\beta)$ is investigated for the singular diffusion equation with critical gradient absorption \begin{equation*} \partial_{t} u-\Delta_{p} u+|\nabla u|^{p/2}=0 \quad \;\;\hbox{in}\;\; (0,\infty)\times\real^N \end{equation*} where $2N/(N+1) < p < 2$. Such solutions are shown to exist only if the parameter $\beta$ ranges in a bounded interval $(0,\beta_*]$ which is in sharp contrast with well-known singular diffusion equations such as $\partial_{t}\phi-\Delta_{p} \phi=0$ when $p=2N/(N+1)$ or the porous medium equation $\partial_{t}\phi-\Delta\phi^m=0$ when $m=(N-2)/N$. Moreover, the profile $f(r;\beta)$ decays to zero as $r\to\infty$ in a faster way for $\beta=\beta_*$ than for $\beta\in (0,\beta_*)$ but the algebraic leading order is the same in both cases. In fact, for large $r$, $f(r;\beta_*)$ decays as $r^{-p/(2-p)}$ while $f(r;\beta)$ behaves as $(\log r)^{2/(2-p)} r^{-p/(2-p)}$ when $\beta\in (0,\beta_*)$.

Details

Language :
English
ISSN :
09517715 and 13616544
Database :
OpenAIRE
Journal :
Nonlinearity, Nonlinearity, IOP Publishing, 2013, 26, pp.3169-3195. ⟨10.1088/0951-7715/26/12/3169⟩, Nonlinearity, 2013, 26, pp.3169-3195. ⟨10.1088/0951-7715/26/12/3169⟩
Accession number :
edsair.doi.dedup.....0d98780c7714368dcca4e2c42ef571b7
Full Text :
https://doi.org/10.1088/0951-7715/26/12/3169⟩