Back to Search
Start Over
Eternal solutions to a singular diffusion equation with critical gradient absorption
- Source :
- Nonlinearity, Nonlinearity, IOP Publishing, 2013, 26, pp.3169-3195. ⟨10.1088/0951-7715/26/12/3169⟩, Nonlinearity, 2013, 26, pp.3169-3195. ⟨10.1088/0951-7715/26/12/3169⟩
- Publication Year :
- 2013
- Publisher :
- HAL CCSD, 2013.
-
Abstract
- The existence of nonnegative radially symmetric eternal solutions of exponential self-similar type $u(t,x)=e^{-p\beta t/(2-p)} f_\beta(|x|e^{-\beta t};\beta)$ is investigated for the singular diffusion equation with critical gradient absorption \begin{equation*} \partial_{t} u-\Delta_{p} u+|\nabla u|^{p/2}=0 \quad \;\;\hbox{in}\;\; (0,\infty)\times\real^N \end{equation*} where $2N/(N+1) < p < 2$. Such solutions are shown to exist only if the parameter $\beta$ ranges in a bounded interval $(0,\beta_*]$ which is in sharp contrast with well-known singular diffusion equations such as $\partial_{t}\phi-\Delta_{p} \phi=0$ when $p=2N/(N+1)$ or the porous medium equation $\partial_{t}\phi-\Delta\phi^m=0$ when $m=(N-2)/N$. Moreover, the profile $f(r;\beta)$ decays to zero as $r\to\infty$ in a faster way for $\beta=\beta_*$ than for $\beta\in (0,\beta_*)$ but the algebraic leading order is the same in both cases. In fact, for large $r$, $f(r;\beta_*)$ decays as $r^{-p/(2-p)}$ while $f(r;\beta)$ behaves as $(\log r)^{2/(2-p)} r^{-p/(2-p)}$ when $\beta\in (0,\beta_*)$.
- Subjects :
- Diffusion equation
critical exponent
Eternal solution
$p$-Laplacian
General Physics and Astronomy
Type (model theory)
self-similar solution
01 natural sciences
gradient absorption
Mathematics - Analysis of PDEs
FOS: Mathematics
[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]
Beta (velocity)
Absorption (logic)
Nabla symbol
0101 mathematics
Mathematical Physics
Mathematical physics
Mathematics
singular diffusion
Applied Mathematics
010102 general mathematics
Zero (complex analysis)
Order (ring theory)
uniqueness
Statistical and Nonlinear Physics
010101 applied mathematics
p-Laplacian
35K67, 35K92, 34B40, 34C11, 35B33
Analysis of PDEs (math.AP)
Subjects
Details
- Language :
- English
- ISSN :
- 09517715 and 13616544
- Database :
- OpenAIRE
- Journal :
- Nonlinearity, Nonlinearity, IOP Publishing, 2013, 26, pp.3169-3195. ⟨10.1088/0951-7715/26/12/3169⟩, Nonlinearity, 2013, 26, pp.3169-3195. ⟨10.1088/0951-7715/26/12/3169⟩
- Accession number :
- edsair.doi.dedup.....0d98780c7714368dcca4e2c42ef571b7
- Full Text :
- https://doi.org/10.1088/0951-7715/26/12/3169⟩