Back to Search Start Over

Variational Meta Reinforcement Learning for Social Robotics

Authors :
Ballou, Anand
Alameda-Pineda, Xavier
Reinke, Chris
Vers des robots à l’intelligence sociale au travers de l’apprentissage, de la perception et de la commande (ROBOTLEARN)
Inria Grenoble - Rhône-Alpes
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Grenoble Alpes (UGA)
ANR-19-CE33-0008,ML3RI,Apprentissage de bas-niveau d'ineractions robotiques multi-modales avec plusieurs personnes(2019)
ANR-19-P3IA-0003,MIAI,MIAI @ Grenoble Alpes(2019)
European Project: 871245,H2020-EU.2.1.1. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT),SPRING(2020)
Alameda-Pineda, Xavier
Apprentissage de bas-niveau d'ineractions robotiques multi-modales avec plusieurs personnes - - ML3RI2019 - ANR-19-CE33-0008 - AAPG2019 - VALID
MIAI @ Grenoble Alpes - - MIAI2019 - ANR-19-P3IA-0003 - P3IA - VALID
Socially Pertinent Robots in Gerontological Healthcare - SPRING - - H2020-EU.2.1.1. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT)2020-01-01 - 2024-05-31 - 871245 - VALID
Source :
Applied Intelligence, Applied Intelligence, 2023, pp.1-16
Publication Year :
2023
Publisher :
HAL CCSD, 2023.

Abstract

With the increasing presence of robots in our every-day environments, improving their social skills is of utmost importance. Nonetheless, social robotics still faces many challenges. One bottleneck is that robotic behaviors need to be often adapted as social norms depend strongly on the environment. For example, a robot should navigate more carefully around patients in a hospital compared to workers in an office. In this work, we investigate meta-reinforcement learning (meta-RL) as a potential solution. Here, robot behaviors are learned via reinforcement learning where a reward function needs to be chosen so that the robot learns an appropriate behavior for a given environment. We propose to use a variational meta-RL procedure that quickly adapts the robots' behavior to new reward functions. As a result, given a new environment different reward functions can be quickly evaluated and an appropriate one selected. The procedure learns a vectorized representation for reward functions and a meta-policy that can be conditioned on such a representation. Given observations from a new reward function, the procedure identifies its representation and conditions the meta-policy to it. While investigating the procedures' capabilities, we realized that it suffers from posterior collapse where only a subset of the dimensions in the representation encode useful information resulting in a reduced performance. Our second contribution, a radial basis function (RBF) layer, partially mitigates this negative effect. The RBF layer lifts the representation to a higher dimensional space, which is more easily exploitable for the meta-policy. We demonstrate the interest of the RBF layer and the usage of meta-RL for social robotics on four robotic simulation tasks.<br />16 pages, 14 figures

Details

Language :
English
ISSN :
0924669X and 15737497
Database :
OpenAIRE
Journal :
Applied Intelligence, Applied Intelligence, 2023, pp.1-16
Accession number :
edsair.doi.dedup.....0d920ceb958669c455189c8f9843657d