Back to Search Start Over

Simplifying quantum logic using higher-dimensional Hilbert spaces

Authors :
Kevin J. Resch
Jeremy L. O'Brien
Thomas Jennewein
Geoff J. Pryde
Marcelo P. Almeida
Andrew White
Alexei Gilchrist
Timothy C. Ralph
B. P. Lanyon
Marco Barbieri
Department of Physics and Centre for Quantum Computer Technology
University of Queensland [Brisbane]
Laboratoire Charles Fabry de l'Institut d'Optique / Optique quantique
Laboratoire Charles Fabry de l'Institut d'Optique (LCFIO)
Centre National de la Recherche Scientifique (CNRS)-Institut d'Optique Graduate School (IOGS)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut d'Optique Graduate School (IOGS)-Université Paris-Sud - Paris 11 (UP11)
Institute for Quantum Optics and Quantum Information
Austrian Academy of Sciences (OeAW)
Institute for Quantum Computing [Waterloo] (IQC)
University of Waterloo [Waterloo]
Department of Physics and Astronomy [Waterloo]
Centre for Quantum Dynamics
Griffith University [Brisbane]
Centre for Quantum Photonics
University of Bristol [Bristol]
Physics Department
Macquarie University
Lanyon, Bp
Barbieri, Marco
Almeida, Mp
Jennewein, T
Ralph, Tc
Resch, Kj
Pryde, Gj
O'Brien, Jl
Gilchrist, A
White, Ag
Source :
Nature Physics, Nature Physics, Nature Publishing Group, 2009, 5, pp.134-140. ⟨10.1038/nphys1150⟩
Publication Year :
2008
Publisher :
Springer Science and Business Media LLC, 2008.

Abstract

International audience; Quantum computation promises to solve fundamental, yet otherwise intractable, problems across a range of active fields of research. Recently, universal quantum logic-gate sets--the elemental building blocks for a quantum computer--have been demonstrated in several physical architectures. A serious obstacle to a full-scale implementation is the large number of these gates required to build even small quantum circuits. Here, we present and demonstrate a general technique that harnesses multi-level information carriers to significantly reduce this number, enabling the construction of key quantum circuits with existing technology. We present implementations of two key quantum circuits: the three-qubit Toffoli gate and the general two-qubit controlled-unitary gate. Although our experiment is carried out in a photonic architecture, the technique is independent of the particular physical encoding of quantum information, and has the potential for wider application.

Details

ISSN :
17452481, 17452473, and 14764636
Volume :
5
Database :
OpenAIRE
Journal :
Nature Physics
Accession number :
edsair.doi.dedup.....0d816b5df15ee0f96fe170ce84b67fd8