Back to Search Start Over

Evaluation of the Replication and Immunogenicity of Recombinant Human Parainfluenza Virus Type 3 Vectors Expressing up to Three Foreign Glycoproteins

Authors :
Claes Örvell
Sonja R. Surman
Brian R. Murphy
Jeffrey M. Riggs
Mario H. Skiadopoulos
Peter L. Collins
Source :
Virology. 297(1):136-152
Publication Year :
2002
Publisher :
Elsevier BV, 2002.

Abstract

The level of replication and immunogenicity of recombinant parainfluenza virus type 3 (rHPIV3) bearing one, two, or three gene insertions expressing foreign protective antigens was examined. cDNA-derived recombinant HPIV3s bearing genes encoding the open reading frames (ORFs) of the hemagglutinin-neuraminidase (HN) of HPIV1, the HN of HPIV2, or the hemagglutinin (HA) of measles virus replicated efficiently in vitro, including the largest recombinant, which had three gene unit insertions and which was almost 23 kb in length, 50% longer than unmodified HPIV3. Several viruses were recovered from cDNAs whose genome length was not a multiple of six nucleotides and these contained nucleotide insertions that corrected the length to be a multiple of 6, confirming that the “rule of six” applies to HPIV3. Using a hemagglutination inhibition assay, we determined that the HPIV1 HN expressed by recombinant HPIV3 was incorporated into HPIV3 virions, whereas using this assay incorporation of the HPIV2 HN could not be detected. HPIV3 virions bearing HPIV1 HN were not neutralized by HPIV1 antiserum but were readily neutralized by antibodies to the HPIV3 HN or fusion protein (F). Viruses with inserts were restricted for replication in the respiratory tract of hamsters, and the level of restriction was a function of the total number of genes inserted, the nature of the insert, and the position of the inserted gene in the gene order. A single insert of HPIV2 HN or measles virus HA reduced the in vivo replication of rHPIV3 up to 25-fold, whereas the HPIV1 HN insert decreased replication almost 1000-fold. This indicates that the HPIV1 HN insert has an attenuating effect in addition to that of the extra gene insert itself, presumably because it is incorporated into the virus particle. Viruses containing two inserts were generally more attenuated than those with a single insert, and viruses with three inserts were over-attenuated for replication in hamsters. Inserts between the N and P genes were slightly more attenuating than those between the P and the M genes. A recombinant HPIV3 bearing both the HPIV1 and the HPIV2 HN genes (r1HN 2HN) was attenuated, immunogenic, and protected immunized hamsters from challenge with HPIV1, HPIV2, and HPIV3. Thus, it is possible to use a single HPIV vector expressing two foreign gene inserts to protect infants and young children from the severe lower respiratory tract disease caused by the three major human PIV pathogens.

Details

ISSN :
00426822
Volume :
297
Issue :
1
Database :
OpenAIRE
Journal :
Virology
Accession number :
edsair.doi.dedup.....0d78337729ca8cd7d5a1c20429debe85
Full Text :
https://doi.org/10.1006/viro.2002.1415