Back to Search
Start Over
Weak sequential properties of the multiplication operators on Banach algebras
- Source :
- Quaestiones Mathematicae; Vol. 45 No. 9 (2022); 1333-1342
- Publication Year :
- 2022
- Publisher :
- Taylor & Francis, 2022.
-
Abstract
- Let $A$ be a Banach algebra. For $f\in A^{\ast}$, we inspect the weak sequential properties of the well-known map $T_f:A\to A^{\ast}$, $T_f(a) = fa$, where $fa\in A^{\ast}$ is defined by $fa(x) = f(ax)$ for all $x\in A$. We provide equivalent conditions for when $T_f$ is completely continuous for every $f\in A^{\ast}$, and for when $T_f$ maps weakly precompact sets onto L-sets for every $f\in A^{\ast}$. Our results have applications to the algebra of compact operators $K(X)$ on a Banach space $X$.
- Subjects :
- Condensed Matter::Quantum Gases
Quantitative Biology::Biomolecules
Pure mathematics
Mathematics::Operator Algebras
Banach space
Mathematics::General Topology
46B10, 46H99, 47B07, 47L10
Compact operator
Joint weak sequential continuity
Functional Analysis (math.FA)
Mathematics - Functional Analysis
Mathematics (miscellaneous)
FOS: Mathematics
Condensed Matter::Strongly Correlated Electrons
Multiplication
Algebra over a field
Banach *-algebra
Mathematics
Subjects
Details
- Language :
- English
- ISSN :
- 16073606 and 1727933X
- Database :
- OpenAIRE
- Journal :
- Quaestiones Mathematicae
- Accession number :
- edsair.doi.dedup.....0d55b874a8ec18d8c767d7e12f9e0dc3