Back to Search Start Over

Unbounded $p$-convergence in Lattice-Normed Vector Lattices

Authors :
Ayd��n, A.
Emelyanov, E. Yu.
��zcan, N. Erkur��un
Marabeh, M. A. A.
Publication Year :
2016

Abstract

A net $x_\alpha$ in a lattice-normed vector lattice $(X,p,E)$ is unbounded $p$-convergent to $x\in X$ if $p(|x_\alpha-x|\wedge u)\xrightarrow{o} 0$ for every $u\in X_+$. This convergence has been investigated recently for $(X,p,E)=(X,\lvert\cdot \rvert,X)$ under the name of $uo$-convergence, for $(X,p,E)=(X,\lVert\cdot\rVert,{\mathbb R})$ under the name of $un$-convergence, and also for $(X,p,{\mathbb R}^{X^*})$, where $p(x)[f]:=|f|(|x|)$, under the name $uaw$-convergence. In this paper we study general properties of the unbounded $p$-convergence.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....0d4d01423bfb61250f21dc439105202e