Back to Search Start Over

Behavior and periodic solutions of a two-dimensional systems of rational difference equations

Authors :
E. M. Elabbasy
Samia Ibrahim
Abdelalim A. Elsadany
Source :
Journal of Interpolation and Approximation in Scientific Computing, Vol 2016, Iss 2, Pp 87-104 (2016)
Publication Year :
2016
Publisher :
ISPACS GmbH, 2016.

Abstract

This paper is devoted to investigate the local asymptotic stability, boundedness and periodic solutions of particular cases of the following general system of difference equations: x_{n+1}=\frac{a_{1}y_{n-1}+a_{2}x_{n-3}+a_{3}}{a_{4}y_{n-1}x_{n-3}+a_{5}},\text{ \ \ \ \ }y_{n+1}=\frac{b_{1}x_{n-1}+b_{2}y_{n-3}+b_{3}}{b_{4}x_{n-1}y_{n-3}+b_{5}}, where the initial conditions $x_{-3},$ $x_{-2},$ $x_{-1},$ $x_{0},$ $y_{-3},$ $y_{-2},$ $y_{-1}$ and $y_{0}$ are arbitrary nonzero real numbers and $a_{i}$ and $b_{i}$ for $i=1,2,3,4,5$ are arbitrary real numbers. Also, we give some numerical examples to illustrate our results.

Details

ISSN :
21943907
Volume :
2016
Database :
OpenAIRE
Journal :
Journal of Interpolation and Approximation in Scientific Computing
Accession number :
edsair.doi.dedup.....0d492183a62dcfba3d373bd4fedb592d
Full Text :
https://doi.org/10.5899/2016/jiasc-00107