Back to Search
Start Over
Behavior and periodic solutions of a two-dimensional systems of rational difference equations
- Source :
- Journal of Interpolation and Approximation in Scientific Computing, Vol 2016, Iss 2, Pp 87-104 (2016)
- Publication Year :
- 2016
- Publisher :
- ISPACS GmbH, 2016.
-
Abstract
- This paper is devoted to investigate the local asymptotic stability, boundedness and periodic solutions of particular cases of the following general system of difference equations: x_{n+1}=\frac{a_{1}y_{n-1}+a_{2}x_{n-3}+a_{3}}{a_{4}y_{n-1}x_{n-3}+a_{5}},\text{ \ \ \ \ }y_{n+1}=\frac{b_{1}x_{n-1}+b_{2}y_{n-3}+b_{3}}{b_{4}x_{n-1}y_{n-3}+b_{5}}, where the initial conditions $x_{-3},$ $x_{-2},$ $x_{-1},$ $x_{0},$ $y_{-3},$ $y_{-2},$ $y_{-1}$ and $y_{0}$ are arbitrary nonzero real numbers and $a_{i}$ and $b_{i}$ for $i=1,2,3,4,5$ are arbitrary real numbers. Also, we give some numerical examples to illustrate our results.
- Subjects :
- Discrete mathematics
Difference equations
Boundedness
Periodic solutions
%22">Stability"/>
lcsh:Mathematics
System of difference equations
010103 numerical & computational mathematics
lcsh:QA1-939
01 natural sciences
010101 applied mathematics
Combinatorics
0101 mathematics
Mathematics
Real number
Subjects
Details
- ISSN :
- 21943907
- Volume :
- 2016
- Database :
- OpenAIRE
- Journal :
- Journal of Interpolation and Approximation in Scientific Computing
- Accession number :
- edsair.doi.dedup.....0d492183a62dcfba3d373bd4fedb592d
- Full Text :
- https://doi.org/10.5899/2016/jiasc-00107