Back to Search
Start Over
Antimicrobial Peptide GL13K Is Effective in Reducing Biofilms of Pseudomonas aeruginosa
- Source :
- Antimicrobial Agents and Chemotherapy. 57:4903-4910
- Publication Year :
- 2013
- Publisher :
- American Society for Microbiology, 2013.
-
Abstract
- Human parotid secretory protein (PSP; BPIF2A) is predicted to be structurally similar to bactericidal/permeability-increasing protein and lipopolysaccharide (LPS)-binding protein. Based on the locations of known antimicrobial peptides in the latter two proteins, potential active peptides in the PSP sequence were identified. One such peptide, GL13NH 2 (PSP residues 141 to 153) was shown previously to interfere with LPS binding and agglutinate bacteria without bactericidal activity. By introducing three additional positively charged lysine residues, the peptide was converted to the novel bactericidal cationic peptide GL13K (MIC for Pseudomonas aeruginosa , 8 μg/ml [5.6 μM]). We investigated the antibiofilm activity of GL13K against static, monospecies biofilms of P. aeruginosa PAO1. Two-hour exposure of a 24-h biofilm to 64 μg/ml (44.8 μM) GL13K reduced biofilm bacteria by 10 2 , and 100 μg/ml (70 μM) GL13K reduced bacteria by 10 3 . Similar results could be achieved on 48-h-old biofilms. Lower concentrations of GL13K (32 μg/ml [22.4 μM]) were successful in reducing biofilm cell numbers in combination with tobramycin. This combination treatment also achieved total eradication of the biofilm in a majority (67.5%) of tested samples. An alanine scan of GL13K revealed the importance of the leucine residue in position six of the peptide sequence, where replacement led to a loss of antibiofilm activity, whereas the impact of replacing charged residues was less pronounced. Bacterial metalloproteases were found to partially inactivate GL13K but not a d amino acid version of the peptide.
- Subjects :
- Pharmacology
Alanine
chemistry.chemical_classification
Pseudomonas aeruginosa
Antimicrobial peptides
Biofilm
Peptide
Biology
medicine.disease_cause
biology.organism_classification
Antimicrobial
Anti-Bacterial Agents
Microbiology
Infectious Diseases
Anti-Infective Agents
chemistry
Biochemistry
Biofilms
medicine
Pharmacology (medical)
Peptides
Mechanisms of Action: Physiological Effects
Peptide sequence
Bacteria
Subjects
Details
- ISSN :
- 10986596 and 00664804
- Volume :
- 57
- Database :
- OpenAIRE
- Journal :
- Antimicrobial Agents and Chemotherapy
- Accession number :
- edsair.doi.dedup.....0d1b261c640e4a8ef6bcd034892cf990
- Full Text :
- https://doi.org/10.1128/aac.00311-13