Back to Search Start Over

Prediction of different sensory attributes related to Brazilian arabica coffee quality using distintc instrumental methods and chemometrics tools

Authors :
Juliano Souza Ribeiro
Ferreira, Marcia Miguel Castro, 1951
Augusto, Fabio, 1964
Faria, Eliete Vaz de
Pereira Filho, Edenir Rodrigues
Bruns, Roy Edward
Collins, Carol Hollingworth
Universidade Estadual de Campinas. Instituto de Química
Programa de Pós-Graduação em Química
UNIVERSIDADE ESTADUAL DE CAMPINAS
Source :
Biblioteca Digital de Teses e Dissertações da Universidade Estadual de Campinas (UNICAMP), Universidade Estadual de Campinas (UNICAMP), instacron:UNICAMP
Publication Year :
2009

Abstract

Orientadores: Marcia Miguel Castro Ferreira, Fabio Augusto Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Quimica Resumo: Atualmente, o café é considerado a segunda bebida mais consumida em todo o mundo, sendo superado somente pela água. Esse consumo representa hoje, cerca de 60 bilhões de dólares anuais, contemplando desde a escolha do grão a ser plantado até o produto final comercializado. No mundo todo, especialistas e pesquisadores buscam meios para reconhecer, valorizar e promover padrões de qualidade para os melhores cafés. Porém, a qualidade da bebida tem se mostrado dependente de vários componentes simultaneamente, e sua avaliação é determinada pela prova ¿de xícara¿, realizada por profissionais experientes na arte de degustar café (provadores). Deste modo, este trabalho visou a construção de modelos quimiométricos de previsão de diversos atributos sensoriais do café arábica brasileiro, a partir da correlação entre o aroma e análises sensoriais. Para isso, a técnica analítica de microextração em fase sólida acoplada a cromatografia gasosa foi utilizada (SPME-GC). Um planejamento experimental realizado com as variáveis experimentais do sistema de SPME indicou as melhores condições para a extração simultânea da maioria dos picos cromatográficos. Com todo o sistema de extração otimizado, foram construídos modelos PLS de previsão para seis atributos sensoriais (acidez, amargor, aroma, bebida, corpo e qualidade global) descritos por provadores, a partir do perfil aromático de amostras de café torrado. Modelos com base em dados espectroscópicos (infravermelho próximo) também foram construídos. Os modelos de regressão PLS gerados a partir dos perfis cromatográficos dos voláteis de cafés arábica torrados e dos dados espectroscópicos previram adequadamente as notas dos seis atributos sensoriais estudados. Os erros de previsão desses modelos foram baixos e compatíveis com os erros médios das notas fornecidas pelos provadores Abstract: Nowadays, coffee is considered the second most consumed beverage in the whole world, only being surpassed by water. This consumption represents about 60 billion dollars annually, from the choice of the seed to be planted until the final commercialized product. In the entire world, specialists and scientists search for ways to recognize, to promote and to valorize standards of quality for the best coffee beverages. However, the quality of the beverage depends on various compounds simultaneously, and its evaluation is determined by the cup profile carried out by experts in the art of sampling fresh coffee (cuppers). Thus, this work aimed at the construction of chemometric models for the prediction of diverse sensory attributes of Brazilian Arabica coffees from the correlation between their aromas and their sensory analyses. For this, the analytical technique used was solid phase microextraction followed by gas chromatography (SPME-GC). An experimental design carried out with the several variables of the SPME system indicated the best conditions for the simultaneous extraction of the majority of the chromatographic peaks. With the extraction system optimized, PLS prediction models for six sensory attributes (acidity, bitterness, flavour, cleanliness, body and overall quality) described by the cuppers were constructed from the flavour profile of roasted coffee samples. Spectroscopic models based on spectroscopic data (near infrared) were also constructed. The PLS regression models generated from the chromatographic profiles and of the spectroscopic data of roasted Arabica coffee adequately predicted notes of the six sensorial attributes studied. The prediction errors of these models were low and compatible with the average errors of notes supplied by the cuppers Doutorado Química Analítica Doutor em Ciências

Details

Language :
Portuguese
Database :
OpenAIRE
Journal :
Biblioteca Digital de Teses e Dissertações da Universidade Estadual de Campinas (UNICAMP), Universidade Estadual de Campinas (UNICAMP), instacron:UNICAMP
Accession number :
edsair.doi.dedup.....0d0d35babbe3fae855410eade0a87c6a